
CDF: Predictably Secure Web Documents
Peter Snyder∗, Laura Watiker†, Cynthia Taylor∗, Chris Kanich∗

∗{psnyde2, cynthiat, ckanich}@uic.edu
Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607

†lwatiker@world.oberlin.edu
Department of Computer Science

Oberlin College
Oberlin, OH 44074

Abstract—Users wishing to protect their privacy and security
on the modern web are asked do the impossible: to only send
information to trusted hosts, to be careful with the functionality
they expose to websites (in the form of plugins or advanced
browser capabilities), and to generally only interact with “safe”
websites. Such recommendations require non-expert web users
to audit the origins a website will fetch resources from, and the
browser features those sites will access. These recommendations
are, in practice, impossible for non-expert web users.

In this work we propose CDF, a novel document format for
describing interactive websites. CDF provides client–enforced
security and privacy guarantees by constraining the types of
browser features web authors can access. In contrast to the
current approach of using arbitrary JavaScript to deliver inter-
activity, CDF provides website authors a set of safe interactive
primitives they can compose into rich, interactive websites. This
approach allows for the types of interactive web experiences
users expect, without the unpredictability or risk of arbitrary
JavaScript or unconstrained HTML.

We evaluate the usability of this approach by implementing
several different web applications, selected to be representative
of the types of websites users regularly encounter. We found that
we could replicate nearly all user-facing functionality in CDF.

I. INTRODUCTION

The web was initially designed to deliver mostly static
documents. Assets requested from the server were mainly
unchanging files that could be easily verified to be of a set
structure and have a predictable effect when rendered by the
client. Over time, the web has moved from being a text based
document retrieval system to a robust application platform,
with multiple programming languages, systems for delivering
and executing byte code (Java, Flash, Unity, etc), and an ever
increasing list of web-native APIs and features.

The current approach to creating interactive websites gives
web authors a great deal of control and power over the
environment of users’ browsers. However, the web’s flexibility
and feature-set comes with a significant cost to web users’
security and privacy. The web’s dynamic nature and reliance
on JavaScript makes it difficult, if not impossible, for users
to predict the effect of visiting a website before the site has
already been delivered to the client, even if they only wished
to view some inert content like a blog post or photograph.
No matter how simple a site’s intended functionality might

be, modern browsers expose one’s machine to an incredibly
broad collections of features and functionalities. While this
design enables frictionless use of new features and new web
experiences, each of these features increases the browser’s
attack surface and thus the potential for a malicious site to
access a bug which causes a serious security breach.

JavaScript adds a large amount of risk to the web. Malicious
websites use JavaScript to attack users through heap sprays,
access Web API features that have known security and privacy
vulnerabilities, perform fingerprinting of users, and generally
send sensitive information to unknown and untrusted domains.
In general, JavaScript is a significant part of the reason why it
is difficult to evaluate the safety of a website before visiting it,
and thus why it is difficult to give easil understood guidelines
to non–expert users on how to understand and enact internet
safety.

A security-concerned user could, in theory, browse the web
without allowing JavaScript or plugins to run. However, much
of the modern web would be severely broken for this user. If
they did wish to gain access to any of the useful functionality
of certain sites—to control a drop down menu or load newly
posted comments from the server—they would be forced to
allow these sites the permission to execute any of the esoteric,
complicated, or unproven functionality that is made available
to every website. Here we see a major issue with the modern
web: permission to execute can not be granted on the basis of
functionality, and at best can be granted on a per-site basis.

A more secure approach would reduce the amount of trust
a user must give to use the web. Instead of receiving and
executing arbitrary code delivered by the server, users could
receive documents that by design cannot contain code. These
safer documents could consist of only descriptions of safe
and trusted functionality, from a finite list of safe functions.
Clients who desire improved security when surfing the web
could then limit the functionality exposed to untrusted sites to
only those known-safe features. Such a scenario would allow
page authors to describe safe and interactive web sites without
the client needing to trust the web site to provide the page’s
implementation.

This paper presents CDF, or Contained Document Format, a



redesign of the client side language for describing responsive
and secure interactive hypermedia documents. The design is
intended to serve as a proof of concept that a hypermedia based
communication medium with a generic design can provide the
features necessary for a large subset of the popular uses of
today’s web, without the security and privacy risks posed by
the web’s current JavaScript-based design.

II. RELATED WORK

Several attempts have been made to make JavaScript from
untrusted sources safe to run in the browser. The most drastic
of these, NoScript [1] disallows all JavaScript, Java or Flash
on any sites that the user has not designated as trusted; of
course, this drastically limits the functionality of untrusted
sites. Static JavaScript analysis of third party scripts [2], [3],
[4], [5], [6] has good performance, but is inherently limited
by undecidability. Another technique is to transform untrusted
JavaScript, adding run-time checks [7], [8], [9], [10]. These
mechanisms restrict difficult-to-handle semantics, but can make
debugging difficult and code execute slower. Other techniques
seek a more flexible authorization control, which specifies what
types of operations are allowed [11], [12], [13], [14]. We note
that the above techniques either require fine-grain authorization
or loss of functionality (i.e. breakage).

Static analyzers can be used to rewrite JavaScript; they
are useful for developers who want to provide safe widgets.
While not sufficiently flexible to support large, third party
libraries [7], [5], [2], [9], they can be useful in constrained
environments. AdSafe [15] inspects guest JavaScript code for
patterns that allow unsafe access to the global “document”
object or rely upon implied global variables. Untrusted code
using such features is flagged as unsafe and not allowed to
run on the page, trading off functionality for security.

JavaScript can also be constrained at runtime to prevent or
mitigate security breaches. Google Caja [16] creates a virtual
environment which can detect unsafe or privacy leaking be-
haviors. This approach is conceptually similar to automatically
instrumenting C code with buffer overflow protections, and
similarly trades off performance for predictability and security.
Code injection defenses (like disabling inline scripts) can also
be encapsulated in explicit policies [17] or inferred for legacy
code with automated methods [18].

There has also been significant work adding user-controlled
privacy features to the browser. The Tor onion router provides
protection with respect to traffic analysis, but does not encrypt
end to end, and does not anonymize client-to-server leakages
[19], [20]. To provide a comprehensive solution, the Tor
Browser Bundle is distributed with a version of Firefox
customized to provide more privacy. The common inclusion
of third party social plugins allows the plugin providers to
track users throughout their browsing session, and researchers
have built systems that mitigate this tracking capability [21].
Ghostery [22] both identifies and reports tracking packages to
the user, and blocks cookies, in order to guarantee the user
greater privacy.

III. MOTIVATION AND DESIGN

CDF is an alternative method of creating modern, interactive
websites, but with greater security and privacy guarantees
than the current HTML-and-JavaScript system provides. The
principal features in the design of CDF are as follows.

First, CDF prevents websites from running arbitrary code
in the client browser. Instead, CDF authors create interactive
websites by composing trusted, client-controlled implementa-
tions of interactive web functionality using an easily checked,
declarative syntax. Second, CDF only uses a subset of browser
features, allowing websites to access only the “core” or most
popular and frequently used tools for creating interactive web
sites. Third, CDF places stricter constraints on web documents
than current HTML-and-JavaScript applications enforce, to
better protect user privacy and security.

Table I provides a comparison of the capabilities and guaran-
tees made by current HTML-and-JavaScript based applications,
contrasted against CDF documents. The following subsections
provide more detail about each aspect of the design of CDF.

A. Trusted Feature Implementation

CDF’s main method for improving user security and privacy
is by preventing websites from executing arbitrary JavaScript in
the browser. The current JavaScript-based system for providing
interactive websites is the cause of many web browser security
problems. Web browsers must trust that code will carry out
some non-malicious purpose when executing it, and that a
given set of JavaScript instructions will benefit the user (by,
for example, setting up a website’s user interface elements)
instead of harming the user (e.g. by fingerprinting the user,
accessing a browser feature with a known security flaw, or
sending a session token to a remote server).

Instead of the difficult to secure JavaScript approach, CDF
provides a set of trusted, client-side implemented interactive
primitives, and allows websites to compose them using a
declarative, easy to verify syntax. CDF authors can, for example,
tie a mouse click event to a document attribute change event,
not by writing code directly, but through the structure of the
document. CDF clients include their own trusted libraries that
handle generating code and executing the relevant functionality
on the clients, without trusting code provided by the website.

The result is that CDF documents are composed from
functionality implemented in trusted, client-controlled libraries.
These libraries are designed to compose safely, and pages can
only access them through a simple, declarative syntax. This
is in contrast to the typical JavaScript based approach, where
websites can execute arbitrary code, and web browsers must
judge if the resulting behavior seems safe through heuristics
like XSS filters and code origin reputation systems.

B. CDF Feature Selection

CDF also protects user security and privacy by reducing the
browser’s attack surface by preventing websites from accessing
browser functionality that is either rarely used, or predominantly
used for advertising and tracking.



Capability HTML + JS CDF

Load static media from remote and local domains X X
Load non-client controlled JavaScript X -
Can express common web design idioms X X
Server control over HTTP referer and related privacy settings X -
Client guarantees over HTTP referer and related privacy settings - X
Read sensitive values from cookies, local storage, etc. X -
Sub-page / AJAX requests and updates X X
Allow form submissions and AJAX updates to remote domains X -
HTML5 multimedia (<audio>, <video>) X X
Supports common browser plugins (Flash, Java, Silverlight) X -
Advanced JavaScript tools (WebGL, <canvas>, ASM.js) X -
Client side storage (IndexDB, localStorage, etc) X -
Offline Applications X X

TABLE I
FEATURE COMPARISON BETWEEN HTML AND CDF DOCUMENT FORMATS.

Modern web browsers implement a huge array of features,
which site authors access through JavaScript APIs (either the
DOM or the Web API). Some features are closely related to the
web’s core purpose of interactive documents. Examples of such
features include the DOM Level 2: Core standard [23], used to
manipulate and inspect an HTML document with JavaScript,
or the XMLHttpRequest standard [24], which allows websites
to make sub-document updates to the origin domain without
refreshing the page.

Other browser features are more esoteric and only loosely
related to the goal of providing interactive documents. For
example, modern web browsers implement the Web Audio
standard [25], which allows websites to perform full audio
synthesis, the Ambient Light standard [26], which allow
websites to access any light sensors on the device, and the
WebRTC standard [27], which allows web browsers to create
peer-to-peer networks.

Research done by Snyder et al [28] found that a small number
of browser features, primary related to document-manipulation
and updating, were frequently used on the web, while the
majority of JavaScript-accessed features were never used by
websites. The same work found that even more browser features
became rarely used when filtering out advertising and tracking
related usage.

CDF improves user security and privacy by only allowing
websites access to the frequently used, document-manipulation
related features in the browser. By preventing websites from
accessing features that do not generally provide user serving
interests (either because those features are primary used for
advertising and tracking, or because the features are rarely
used at all), CDF brings web browsers into closer alignment
with the security principal of least privilege. The attack surface
exposed to websites is dramatically reduced, with minimal
impact to the user experience.

C. Document Constraints

HTML-based applications include several other design as-
pects that make them difficult to secure. HTML and JavaScript
based applications allow scripts to be loaded from remote
locations from any part of the HTML document, enabling many
XSS attacks. HTML documents can contain full sub-documents

through the use of <iframe> elements, enabling drive
by downloads and related attacks. And HTML applications
generally include a “referer” header when requesting remote
resources, enabling some forms of user tracking.

CDF improves user security and privacy by tightly-
controlling what kinds of resources documents can fetch,
and what information is sent during the fetch request. CDF
documents cannot include arbitrary code (either inline or
hosted remotely), include sub-documents, or send information
generated in the client directly to remote domains.

IV. IMPLEMENTATION

We implemented CDF in two parts, first as a document
specification, and second as several additions to the browser’s
trusted base: a parser that converts CDF documents into
trusted HTML and JavaScript, a HTTP proxy that converts
CDF documents for use in web browsers, and a set of trusted
JavaScript libraries that run in the browser to implement the
interactive aspects of CDF documents.

The described system was implemented to allow CDF
documents to be run in web browsers today, with no additions
or modifications needed to any recently released browser. The
same design could be implemented by modifying a browser
to be able parse and understand CDF documents “natively”,
though at the cost of a much greater engineering task.

We also adopted cascading style sheets, or CSS, to handle
the presentation of CDF applications. We did so to minimize
the engineering effort needed to implemented the CDF concept,
and because of the relative lack of security issues associated
with CSS compared to JavaScript.

This section gives a high level explanation of how our
implementation of the CDF design works. Documentation for
creating CDF documents, including type specifications, nesting
rules, and the interactivity primitives included in CDF can be
found in an open source implementation and accompanying
documentation1.

1https://github.com/bitslab/cdf.



A. Document Format

CDF uses JSON strings to represent documents. CDF
documents are trees of typed objects. Types in CDF fall into
one of four categories.

• Elements. The structure and text of the document.
• Events. New input from the network or the user.
• Behaviors. Descriptions of what should happen when an

Event has triggered.
• Deltas. Changes to be applied to the document.
Each type defines the configuration it can receive (e.g. the

URL that a image object can refer to), and the types it accepts
as children in the tree. For example text objects can be
children of button objects (to create labels on buttons), but
button objects cannot be children of text objects. Since the
types in CDF are all well defined, they can be strictly checked
to ensure they will have predictable effects when rendered in
the client.

Some types accept configuration parameters (e.g. the class
names to add to the element when rendered in HTML, or the
local URL to post a form’s information to). These configuration
parameters are also strictly typed, and so can be checked for
safety and correctness before being rendered in the client.

Types are designed to emphasize predictable information
flow and user privacy. For example, in CDF form elements
are only allow to send information to the origin domain, while
in HTML applications, <form> elements can be configured
to send information to any domain.

B. Trusted Base Additions

We implemented the CDF design through three additions to
the current trusted web browser trusted base. These additions,
in tandem, enforce the security and privacy properties discussed
in Section III.

1) Parser: The first addition CDF makes to the browser’s
trusted base is a CDF parser. The role of the CDF parser is to
take strings and either identify them as invalid CDF documents,
or to render an equivalent and safe HTML and JavaScript string
that can be rendered in the browser. The parser also provides
debugging information as a convenience to CDF authors.

If the parser is given a valid CDF document, it converts it
into a combination of HTML tags, escaped text, <script>
tags referencing JavaScript libraries that are part of the CDF
trusted base, and <script> tags containing parameters to
be passed to those trusted libraries. Invalid documents “fail
closed”, and return an error code and no output.

2) HTTP Proxy: The second addition CDF makes to the
browser’s trusted base is an HTTP proxy that sits between the
browser and the internet. The proxy passes requests from the
browser to the destination server unchanged. Once the server
responds, the proxy examines the response. If the response
appears to be a CDF document, the HTTP proxy extracts the
body of the request and provides it to the parser. If the parser
accepts the response as a valid CDF document, the proxy
passes the parser-generated HTML and JavaScript back to the
client. If the parser rejects the server’s response as invalid
CDF, the proxy instead passes back an error message to the

client, informing the user that the server provided an invalid
document.

3) Client JavaScript Libraries: The third addition to the
browser’s trusted base is in a small number of JavaScript
libraries (14) that implement the interactive elements of each
page. These libraries handle all the client-side logic and
functionality needed for all of the event, behavior and delta
types used in the system, plus some plumbing code needed
to route the parameters extracted by the parser to the correct
library implementations.

V. EVALUATION

We tested the usability and expressiveness of CDF by
implementing several popular types of web applications in
the the system. We selected these applications (a blog modeled
on http://www.vogue.com/, an online-banking site based on
https://www.bankofamerica.com/, a social media site modeled
on https://twitter.com/, and a collaborative web application
similar to HotCRP [29]) to represent the range of sites that
web users commonly interact with. In each case we were able
to replicate the user-facing functionality of each page.

This section evaluates the security benefits of CDF’s ap-
proach for describing interactive websites. For each issue,
we briefly describe a vulnerability common in current web
applications, and then describe how CDF improves the situation.

A. Cross-Site Scripting

Cross-Site scripting (XSS) refers to when attackers are able
to inject JavaScript code into an HTML document, so that the
code is executed by all site visitors, trusted as if the code came
from the site author. The technique is used for many malicious
purposes, including extracting session tokens from the client
or redirecting the user to a domain the attacker controls.

CDF protects the client from XSS attacks. First and most
significantly it removes the ability for a document to describe
any kind of JavaScript code directly. Instead of arbitrary code,
CDF documents can only describe a composition of trusted,
safe types. While a malicious attacker could possibly corrupt a
target server to present visitors a different composition of types
than the application author intended, CDF’s types constrain
the functionality that can be described to only safe activities.
CDF does not include, for example, anyway to access cookie
values or redirect the client in JavaScript to another location,
common goals of XSS attacks.

B. Page Alteration / Defacement

When application authors do not adequately sanitize or
validate the inputs users provide to their site, they risk giving
users the ability to deface, or otherwise unexpectedly alter, the
presentation of their website. This can lead to a blurring of the
line between a message provided by the page author (which
may be trusted by site visitors) and other web site visitors
(which may be untrusted). This may happen when a naive
application author concatenates the user’s input, represented as
a string, into a larger string the author is using for the returned
content.



CDF’s type system makes this kind of error more difficult
to make. The CDF author must construct pages as trees of
instances of types. Overall page structure and styling cannot be
modified from within an individual child node in the document
tree. In cases where page authors are taking inputs from users,
and anticipate that input to be in the form of an unstructured
piece of text (such as a comment on an article), the page author
would do so by setting the user’s input string as the content
of a text element. When CDF then renders the document to
send to visitors of the site, the CDF parser escapes all content
in text instances to ensure that the content cannot change
the structure of the page (such as by including JavaScript code
or altering the balance of tags on the page).

While CDF does not make this kind of attack impossible (it
is possible to conceive of ways that a sufficiently naive page
author would construct a vulnerable document), it makes the
attack much more difficult to pull off. Instead of becoming
relatively easy for page authors to be affected by this kind of
attack, CDF instead makes it difficult and less likely.

C. Limited Trusted Base

A further source of vulnerability in HTML documents is that
they allow attackers to take advantage of a greatly expanded
trusted base, in the form of browser plugins like Java and
Flash, and in the form of infrequently used Web API features.
As the frequent rate of browser updates shows, securing just
the browser is an extremely difficult task. Needing to trust the
browser in addition to closed source, third party plugins with
long histories of exploitability makes the problem of securing
the web dramatically more difficult.

CDF further reduces the attack surface by removing the
ability of CDF documents to include or refer to plugins.
As previously discussed, CDF does not include any way to
represent an <object>, <embed> or <iframe> tag on the
page, nor does it have a <script> type that could be used
to include the same client side. Earlier in the web’s evolution,
popular features like audio and video could only be provided
by these third party plugins. Now that the web has matured
and all popular browsers support standards for audio and video
with hardware-accelerated playback, the absolute necessity of
these extensions is limited. The CDF specification makes it
impossible for CDF page authors to reference or interact with
any plugins that might be on the system.

D. Client Side Fingerprinting

Web users who have not authenticated or intentionally
identified themselves to a website expect to be semi-anonymous.
Once a user discards any identifying tokens they’ve received
from a website (e.g. deleting their browser cookies) they have
a reasonable expectation that they are no longer known to the
site. Such assumptions are even built into the state-less nature
of HTTP, and required the addition of cookies to add state into
the web.

Malicious websites violate this assumption through client
side fingerprinting, or by including JavaScript code in their

pages to take a large number of quasi-identifiying measure-
ments, and combine them in such a way that site visitors can be
uniquely identified. These quasi-identifiers are not sensitive to
users deleting their cookies, modifying their user agent string,
or taking other similar steps, making it difficult for users to
regain their privacy.

While not all of these techniques rely on client executed
JavaScript code, many do, such as canvas based fingerprinting
[30], [31], identifying the JavaScript engine being used[32] or
font and plugin enumeration [33]. CDF prevents these client-
side fingerprinting techniques by removing the ability of page
authors to include code that takes the relevant measurements.
For example, there is no way for a CDF author to construct a
CDF document that will query the versions of what plugins are
installed on the system, or to use the <canvas> tag to take
semi-uniquely-identifying measures of the visitors browser. By
removing the ability of document authors to include arbitrary
JavaScript in their pages, and by making it impossible to
create documents that take the same identifying measures, CDF
prevents client-side fingerprinting and increases the amount of
anonymity users can expect.

E. Predictable Information Flow

A final threat to the privacy and security of web users is that
it is difficult, if not impossible, for the average user to predict
what information they are sharing when they visit a website,
and where that information is being sent. A user may visit a
website on a domain they trust—and not intending to trust any
other domains in doing so—only to later learn that the site
(maliciously or unknowingly) notified a third party that they
visited the site.

CDF addresses this issue in three ways. First, the most
popular and intrusive tracking systems used today rely, at least
in part, on JavaScript run on the client. Inclusion of third party
tracking libraries is inexpressible in CDF, and thus the user
automatically gains a great deal of privacy-preservation.

Second, the CDF parser sets the Content-Security-
Policy of all documents to referrer never though an
included <meta> tag element, instructing browsers to not send
a referrer header when requesting remote resources, further
protecting the privacy of the user.

Finally, it is extremely difficult for web users to be sure
where their content will be sent when they submit a form on
a webpage, regardless of whether that form is to perform a
search or login in a sensitive website. Even inspecting the
source HTML of the page being viewed is no guarantee, since
JavaScript could have manipulated where the form values will
be sent. CDF removes these uncertainties by only allowing
forms and sub-page requests to send to the current domain.

Tracking pixels which load from third party domains with
unique per-user IDs in their URL are still usable in CDF. While
this allows some level of tracking to persist in CDF, a third
party providing Google Analytics style functionality would
need to synchronize the user IDs with every colluding site,
rather than rely on JavaScript, cookies, and referer headers to
reconstruct user browsing history.



VI. CONCLUSION AND FUTURE WORK

CDF was designed to meet the needs of today’s web users,
with the intention that it can live alongside the traditional web
as a more secure alternative. Our implementation is not meant
as a formal or complete specification of CDF, but rather a proof
of concept that a minimal collection of features can enable
a sufficient amount of expressiveness without sacrificing the
flexibility necessary to implement many sites that modern users
visit every day. Our full implementation of the translating proxy
and authorship tools are available as unencumbered open source
software,2 and it is our desire that the community continues
to explore the full breadth of the design space for the next
iteration of the web, so that the best balance can be found
between security and expressiveness.

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1405886. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] G. Maone, “Noscript - javascript/java/flash blocker for a safer firefox
experience!” https://noscript.net/, 2015, [Online; accessed 08-February-
2015].

[2] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi, “ADsafety:
type-based verification of JavaScript sandboxing,” in Proceedings of
the 20th USENIX Conference on Security, ser. SEC’11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 12–12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028067.2028079

[3] S. Maffeis and A. Taly, “Language-based isolation of untrusted
JavaScript,” in Proceedings of the 2009 22nd IEEE Computer
Security Foundations Symposium, ser. CSF ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 77–91. [Online]. Available:
http://dx.doi.org/10.1109/CSF.2009.11

[4] S. Maffeis, J. C. Mitchell, and A. Taly, “Run-time enforcement of secure
JavaScript subsets,” in In Proc of W2SP09. IEEE, 2009.

[5] S. Guarnieri and B. Livshits, “Gatekeeper: mostly static enforcement of
security and reliability policies for javascript code,” in Proceedings of
the 18th conference on USENIX security symposium, ser. SSYM’09.
Berkeley, CA, USA: USENIX Association, 2009, pp. 151–168. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855768.1855778

[6] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner, “Staged information
flow for JavaScript,” in Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’09. New York, NY, USA: ACM, 2009, pp. 50–62. [Online].
Available: http://doi.acm.org/10.1145/1542476.1542483

[7] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay, “Caja: Safe
active content in sanitized JavaScript.” Google white paper. http://google-
caja.googlecode.com, 2007.

[8] A. Felt, P. Hooimeijer, D. Evans, and W. Weimer, “Talking to strangers
without taking their candy: isolating proxied content,” in Proceedings
of the 1st Workshop on Social Network Systems, ser. SocialNets ’08.
New York, NY, USA: ACM, 2008, pp. 25–30. [Online]. Available:
http://doi.acm.org/10.1145/1435497.1435502

[9] Microsoft Corporation, “Microsoft Web Sandbox,” http://www.
websandbox.org/, 2010.

[10] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir,
“Browsershield: vulnerability-driven filtering of dynamic HTML,”
in Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, ser. OSDI ’06. Berkeley, CA, USA:
USENIX Association, 2006, pp. 61–74. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1298455.1298462

2https://github.com/bitslab/cdf

[11] J. Terrace, S. R. Beard, and N. P. K. Katta, “Javascript in javascript
(js.js): sandboxing third-party scripts,” in Proceedings of the 3rd
USENIX conference on Web Application Development, ser. WebApps’12.
Berkeley, CA, USA: USENIX Association, 2012, pp. 9–9. [Online].
Available: http://dl.acm.org/citation.cfm?id=2342863.2342872

[12] M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan, “Adjail:
practical enforcement of confidentiality and integrity policies on
web advertisements,” in Proceedings of the 19th USENIX conference
on Security, ser. USENIX Security’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 24–24. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1929820.1929852

[13] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection attacks
with browser-enforced embedded policies,” in Proceedings of the
16th International Conference on World Wide Web, ser. WWW ’07.
New York, NY, USA: ACM, 2007, pp. 601–610. [Online]. Available:
http://doi.acm.org/10.1145/1242572.1242654

[14] L. A. Meyerovich and B. Livshits, “Conscript: Specifying and enforcing
fine-grained security policies for JavaScript in the browser,” in
Proceedings of the 2010 IEEE Symposium on Security and Privacy, ser.
SP ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
481–496. [Online]. Available: http://dx.doi.org/10.1109/SP.2010.36

[15] D. Crockford, “Adsafe,” http://www.adsafe.org/, 2011.
[16] M. S. Miller, “Google caja,” https://developers.google.com/caja/, 2013.
[17] S. Stamm, B. Sterne, and G. Markham, “Reining in the web with content

security policy,” in Proceedings of the 19th International Conference on
World Wide Web. ACM, 2010, pp. 921–930.

[18] P. Saxena, D. Molnar, and B. Livshits, “Scriptgard: automatic context-
sensitive sanitization for large-scale legacy web applications,” in Proceed-
ings of the 18th ACM Conference on Computer and Communications
Security. ACM, 2011, pp. 601–614.

[19] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The
second-generation onion router,” in Proceedings of the 13th USENIX
Security Symposium. Berkeley, CA, USA: USENIX Association,
Aug. 2004, pp. 303–320. [Online]. Available: http://www.usenix.org/
publications/library/proceedings/sec04/tech/dingledine.html

[20] ——, “Deploying low-latency anonymity: Design challenges and social
factors,” IEEE Security & Privacy, vol. 5, pp. 83–87, 2007.

[21] G. Kontaxis, M. Polychronakis, A. D. Keromytis, and E. P. Markatos,
“Privacy-preserving social plugins,” in Proceedings of the 21st USENIX
Security Symposium (August 2012), 2012.

[22] D. Cancel, “Ghostery, inc,” https://www.ghostery.com/, 2015, [Online;
accessed 16-May-2015].

[23] A. L. Hors, P. L. Hgaret, L. Wood, G. Nicol, J. Robie, M. Champion,
and S. Byrne, “Document object model (dom) level 2 core specification,”
https://www.w3.org/TR/DOM-Level-2-Core/, 2000.

[24] A. van Kesteren, “Xmlhttprequest,” https://xhr.spec.whatwg.org/, 2016,
[Online; accessed 10-May-2016].

[25] P. Adenot, C. Wilson, and C. Rogers, “Web audio api,” https://www.w3.
org/TR/webaudio/, 2013.

[26] D. Turner and A. Kostiainen, “Ambient light events,” https://www.w3.
org/TR/ambient-light/, 2105.

[27] A. Bergkvist, D. C. Burnett, C. Jennings, A. Narayanan, and B. Aboba,
“Webrtc 1.0: Real-time communication between browsers,” https://www.
w3.org/TR/webrtc/, 2016, [Online; accessed 11-August-2016].

[28] P. Snyder, L. Ansari, C. Taylor, and C. Kanich, “Browser feature usage
on the modern web,” in Proceedings of the 2016 Internet Measurement
Conference, 2016.

[29] E. Kohler, “Hotcrp conference management software,” http://www.read.
seas.harvard.edu/∼kohler/hotcrp/, 2014, [Online; accessed 16-May-2015].

[30] K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting canvas in
html5,” Proceedings of W2SP, 2012.

[31] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz,
“The web never forgets: Persistent tracking mechanisms in the wild,” in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 674–689.

[32] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Fingerprinting
information in javascript implementations,” Proceedings of W2SP, 2011.

[33] P. Eckersley, “How unique is your web browser?” in Privacy Enhancing
Technologies. Springer, 2010, pp. 1–18.


