
Browser Feature Usage on the Modern Web
Peter Snyder

psnyde2@uic.edu
Lara Ansari

lansar2@uic.edu
Cynthia Taylor

cynthiat@uic.edu
Chris Kanich

ckanich@uic.edu
Department of Computer

Science
University of Illinois at Chicago

Chicago, IL 60607

ABSTRACT
Modern web browsers are incredibly complex, with millions
of lines of code and over one thousand JavaScript functions
and properties available to website authors. This work inves-
tigates how these browser features are used on the modern,
open web. We find that JavaScript features differ wildly in
popularity, with over 50% of provided features never used in
the Alexa 10k.

We also look at how popular ad and tracking blockers
change the features used by sites, and identify a set of approx-
imately 10% of features that are disproportionately blocked
(prevented from executing by these extensions at least 90%
of the time they are used). We additionally find that in the
presence of these blockers, over 83% of available features
are executed on less than 1% of the most popular 10,000
websites.

We further measure other aspects of browser feature usage
on the web, including how many features websites use, how
the length of time a browser feature has been in the browser
relates to its usage on the web, and how many security
vulnerabilities have been associated with related browser
features.

1. INTRODUCTION
The web is the world’s largest open application platform.

While initially developed for simple document delivery, it
has grown to become the most popular way of delivering
applications to users. Along with this growth in popularity
has been a growth in complexity, as the web has picked up
more capabilities over time.

This growth in complexity has been guided by both browser
vendors and web standards. Many of these new web capa-
bilities are provided through new JavaScript APIs (referred
to in this paper as features). These capabilities are orga-
nized into collections of related features which are published
as standards documents (in this paper, we refer to these
collections of APIs as standards).

To maximize compatibility between websites and web
browsers, browser vendors rarely remove features from browsers.
Browser vendors aim to provide website authors with new
features without breaking sites that rely on older browser
features. The result is an ever growing set of features in the
browser.

Many web browser features have been controversial and
even actively opposed by privacy and free software activists
for imposing significant costs on users, in the form of infor-
mation leakage or loss of control. The WebRTC [9] standard
has been criticized for revealing users’ IP addresses [46], and

protestors have literally taken to the streets [47] to oppose
the Encrypted Media Extensions [15] standard. This stan-
dard aims to give content owners much more control over
how their content is experienced within the browser. Such
features could be used to prevent users from exerting control
over their browsing experience.

Similarly, while some aspects of web complexity are under-
stood (such as the number of resources web sites request [11]),
other aspects of complexity are not, such as how much of the
available functionality in the browser gets used, by which
sites, how often, and for what purposes. Other related ques-
tions include whether recently introduced features are as
popular as old features, whether popular websites use dif-
ferent features than less popular sites, and how the use of
popular extensions, like those that block advertisements and
online tracking, impact which browser features are used.

This paper answers these questions by examining the use of
browser features on the web. We measure which browser fea-
tures are frequently used by site authors, and which browser
features are rarely used, by examining the JavaScript feature
usage of the ten thousand most popular sites on the web. We
find, for example, that 50% of the JavaScript provided fea-
tures in the web browser are never used by the ten thousand
most popular websites.

We additionally measure the browser feature use in the
presence of popular ad and tracking blocking extensions, to
determine how they effect browser feature use. We find that
installing advertising and tracking blocking extensions not
only reduces the amount of JavaScript users execute when
browsing the web, but changes the kinds of features browsers
execute. We identify a set of browser features (approximately
10%) that are used by websites, but which ad and tracking
blockers prevent from executing more than 90% of the time.
Similarly, we find that over 83% of features available in the
browser are executed on less than 1% of websites in the
presence of these popular extensions.

2. BACKGROUND
In this section, we discuss the complexity of the modern

web browser, along with the use of ad and tracking blockers.

2.1 Modern Web Features
The functionality of modern web browsers has grown to

encompass countless use cases. While the core functionality
embodied by the combination of HTML, CSS, and JavaScript
is largely stable, over the past few years many features have
been added to enable for new use cases. Figure 1 shows the
number of standards available in modern browsers, using
data from W3C documents [60] and Can I Use [14]. Figure 1



0

10

20

30

40

0

5

10

15

W
eb S

tandards
M

illion LO
C

2009 2010 2011 2012 2013 2014 2015

Chrome
Firefox
Safari
IE

Figure 1: Feature families and lines of code in popular
browsers over time.

also shows the total number of lines of code for Firefox and
Chrome [10]. One relevant point of note in the figure is that
in mid 2013, Google moved to the Blink rendering engine,
which entailed removing at least 8.8 million lines of code from
Chrome related to the formerly-used WebKit engine [34].

Vendors are very wary of removing features from the
browser, even if they are used by a very small fraction of all
websites [1, 2]. Because the web is evolving and competing
with native applications, browser vendors are incentivized to
continue adding new features to the web browser and not re-
move old features. This is exacerbated by browsers typically
having a unified code base across different types of computers
including mobile devices, browser-based computers such as
Google Chromebooks, and traditional personal computers.
Browser vendors then expose unique hardware capabilities
like webcams, rotation sensors, vibration motors, or ambient
light sensors [30, 31, 33, 54] directly through JavaScript, re-
gardless of whether the executing device has such a capability.
Furthermore, as new features are added, the current best
practice is to roll them out directly to web developers as
time limited experiments, and allow them to move directly
from experimental features to standard features, available in
all browsers that adhere to the HTML living standard. [48].

Individual websites are also quite complex. Butkiewicz et
al. surveyed 2,000 random websites and found that loading
the base page for a URL required fetching a median of 40
objects, and that 50% of websites fetched at least 6 JavaScript
objects [11].

2.2 Ads and Tracking Blocking
Researchers have previously investigated how people use

ad blockers. Pujol et al. measured AdBlock usage in the
wild, discovering that while a significant fraction of web users
use AdBlock, most users primarily use its ad blocking, and
not its privacy preserving, features [44].

User tracking is a more insidious aspect of the modern
web. Recent work by Radler found that users were much
less aware of cross-website tracking than they were about
collection of data by single sites such as Facebook and Google,
and that users who were aware of it had greater concerns
about unwanted access to private information than those who
weren’t aware [45]. Tracking users’ web browsing activity
across websites is largely unregulated, and a complex network
of mechanisms and businesses have sprung up to provide
services in this space [17]. Krishnamurthy and Willis found
that aggregation of user-related data is both growing and
becoming more concentrated, i.e. being conducted by a
smaller number of companies [32].

Traditionally, tracking was done via client-side cookies, giv-
ing users a measure of control over how much they are tracked
(i.e. they can always delete cookies). However, a wide variety
of non-cookie tracking measures have been developed that
take this control away from users, and these are what track-
ing blockers have been designed to prevent. These include
browser fingerprinting [16], JavaScript fingerprinting [37, 40],
Canvas fingerprinting [38], clock skew fingerprinting [29],
history sniffing [27], cross origin timing attacks [55], ever-
cookies [28], and Flash cookie respawning [7, 49]. A variety
of these tracking behaviors have been observed in widespread
use in the wild [3, 7, 36, 41, 42, 49, 50].

Especially relevant to our work is the use of JavaScript
APIs for tracking. While some APIs, such as Beacon [20], are
designed specifically for tracking, other APIs were designed
to support various other functionality and co-opted into
behaving as trackers [38, 59]. Balebako et al. evaluated tools
which purport to prevent tracking and found that blocking
add-ons were effective [8].

3. DATA SOURCES
This work draws on several existing sets of data. This

section proceeds by detailing how we determined which web-
sites are popular and how often they are visited, how we
determined the current JavaScript-exposed feature set of web
browsers, what web standards those features belong to and
when they were introduced, how we determined the known
vulnerabilities in the web browser (and which browser feature
standard the vulnerability was associated with), and which
browser extensions we used as representative of common
browser modifications.

3.1 Alexa Website Rankings
The Alexa rankings are a well known ordering of websites

ranked by traffic. Typically, research which uses Alexa relies
on their ranked list of the worldwide top one million sites.
Alexa also provides other data about these sites. In addition
to a global ranking of each of these sites, there are local
rankings at country granularity, breakdowns of which sub-
sites (by fully qualified domain name) are most popular, and
a breakdown by page load and by unique visitor of how many
monthly visitors each site gets.



We used the 10,000 top ranked sites from Alexa’s list of
the one-million most popular sites, and which collectively
represent approximately one third of all web visits, as repre-
sentative of the web in general.

3.2 Web API Features
We define a feature as a browser capability that is acces-

sible through calling a JavaScript call or setting a property
on a JavaScript object.

We determined the set of JavaScript-exposed features by
reviewing the WebIDL definitions included in the Firefox
version 46.0.1 source code. WebIDL is a language that defines
the JavaScript features web browsers provided to web authors.
In the case of Firefox, these WebIDL files are included in the
browser source.

In the common case, Firefox’s WebIDL files define a map-
ping between a JavaScript accessible method or property
and the C++ code that implements the underlying function-
ality1. We examined each of the 757 WebIDL files in the
Firefox and extracted 1,392 relevant methods and properties
implemented in the browser.

3.3 Web API Standards
Web standards are documents defining functionality that

web browser vendors should implement. They are generally
written and formalized by organizations like the W3C, though
occasionally standards organizations delegate responsibility
for writing standards to third parties, such as the Khronos
group who maintains the current WebGL standard.

Each standard contains one or more features, generally
designed to be used together. For example, the WebAudio
API [4] standard defines 52 JavaScript features that together
allow page authors to do programmatic sound synthesis.

There are also web standards that cover non-JavaScript
aspects of the browser (such as parsing rules, what tags and
attributes can be used in HTML documents, etc.). This
work focuses only on web standards that define JavaScript
exposed functionality.

We identified 74 standards implemented in Firefox. We
associated each of these to a standards document. We also
found 65 API endpoints implemented in Firefox that are not
found in any web standard document, which we associated
with a catch-all Non-Standard categorization.

In the case of extremely large standards, we identify sub-
standards, which define a subset of related features intended
to be used together. For example, we treat the subsections
of the HTML standard that define the basic Canvas API, or
the WebSockets API, as their own standards.

Because these sub-standards have their own coherent pur-
pose, it is meaningful to discuss them independently of their
parent standards. Furthermore, many have been imple-
mented in browsers independent of the parent standard (i.e.
browser vendors added support for “websockets” long before
they implemented the full “HTML5” standard).

Some features appear in multiple web standards. For ex-
ample, the Node.prototype.insertBefore feature appears

1In addition to mapping JavaScript to C++ methods and
structures, WebIDL can also define JavaScript to JavaScript
methods, as well as intermediate structures that are not ex-
posed to the browser. In practice though, the primary role of
WebIDL in Firefox is to define a mapping between JavaScript
API endpoints and the underlying implementations, generally
in C++.

in the Document Object Model (DOM) Level 1 Specifica-
tion [6], Document Object Model (DOM) Level 2 Core Spec-
ification [23] and Document Object Model (DOM) Level 3
Core Specification [24] standards. In such cases, we attribute
the feature to the earliest published standard.

3.4 Historical Firefox Builds
We determined when features were implemented in Firefox

by examining the 186 versions of Firefox that have been
released since 2004 and testing when each of the 1,392 features
first appeared. We treat the release date of the earliest
version of Firefox that a feature appears in as the feature’s
“implementation date”.

Most standards do not have a single implementation date,
since it could take months or years for all features in a stan-
dard to be implemented in Firefox. We therefore treat the
introduction of a standard’s currently most popular feature
as the standard’s implementation date. For ties (especially
relevant when no feature in a standard is used), we default
to the earliest feature available.

3.5 CVEs
We collected information about browser vulnerabilities by

finding all Common Vulnerabilities and Exposures (CVEs) [53]
(security-relevant bugs discovered in software) related to Fire-
fox that have been documented in the last three years.

The CVE database lists 470 issues from the last three years
that mention Firefox. On manual inspection we found 14 of
these were not actually issues in Firefox, but issues in other
web-related software where Firefox was used to demonstrate
the vulnerability.

Of the remaining 456 CVEs, we were able to manually as-
sociate 111 CVEs with a specific web standard. For example,
CVE-2013-0763 [51] describes a potential remote execution
vulnerability introduced in Firefox’s implementation of the
WebGL [26] standard, and CVE-2014-1577 [52] documents
a potential information-disclosing bug related to Firefox’s
implementation of the Web Audio API standard.

We note that this work only considers CVEs associated
with JavaScript accessible features. It does not include CVEs
reporting vulnerabilities in other parts of the browser. For
example, if a CVE reported an vulnerability due to the
implementation of a SVG manipulating JavaScript function,
we included it in our analysis. If, though, the CVE dealt
with some other issue in Firefox’s SVG handling, such as
parsing the text of a SVG document, we did not consider it
in this work.

3.6 Blocking Extensions
Finally, this work pulls from commercial and crowd-sourced

browser extensions, which are popularly used to modify the
browser environment.

This work uses two such browser extensions, Ghostery
and AdBlock Plus. Ghostery is a browser extension that
allows users to increase their privacy online by modifying
the browser to not load resources or set cookies associated
with cross-domain passive tracking, as determined by the
extension’s maintainer, Ghostery, Inc..

This work also uses the AdBlock Plus browser extension,
which modifies the browser to not load resources the extension
associates with advertising, and to hide elements in the page
that are advertising related. AdBlock Plus draws from a
crowdsourced list of rules and URLs to determine if a resource



is advertising-related.
This work uses the default configuration for each browser

extension, including the default rule sets for which elements
and resources to block. No changes were made to the config-
uration or implementation of either extension.

4. METHODOLOGY
To understand browser feature use on the open web, we

conducted a survey of the Alexa 10k, visiting each site ten
times and recording which browser features were used. We
visited each site five times with an unmodified browsing en-
vironment, and five times with popular tracking-blocking
and advertising-blocking extensions installed. This section
describes the goals of this survey, followed by how we instru-
mented the browser to determine which features are used
on a given site, and then concludes with how we used our
instrumented browser to measure feature use on the web in
general.

4.1 Goals
The goal of our automated survey is to determine which

browser features are used on the web as it is commonly
experienced by users. This requires us to take a broad-
yet-representative sample of the web, and to exhaustively
determine the features used by those sites.

To do so, we built a browser extension to measure which
features are used when a user interacts with a website. We
then chose a representative sample of the web to visit. Finally,
we developed a method for interacting with these sites in
an automated fashion to elicit the same functionality that
a human web user would experience. Each of these steps is
described in detail in the proceeding subsections.

This automated approach only attempts to measure the
“open web”, or the subset of webpage functionality that a
user encounters without logging into a website. Users may
encounter different types of functionality when interacting
with websites they have created accounts for and established
relationships with, but such measurements are beyond the
scope of this paper. We note this restriction, only measuring
functionality used by non-authenticated portions of websites,
as a limitation of this paper and a possible area for future
work.

4.2 Measuring Extension
We instrumented a recent version of the Firefox web

browser (version 46.0.1) with a custom browser extension
to records each time a JavaScript feature has been used on
a visited page. Our extension injects JavaScript into each
page after the browser has created the DOM for that page,
but before the page’s content has been loaded. By injecting
our instrumenting JavaScript into the browser before the
page’s content has been fetched and rendered, we can modify
the methods and properties in the DOM before it becomes
available to the requested page.

The JavaScript that the extension injects into each re-
quested page modifies the DOM to count when an instru-
mented method is called or that an instrumented property
is written to. How the extension measures these method
calls and property writes is detailed in the following two
subsections. Figure 2 presents a representative diagram of
the crawling process.

1 Each browser requests
the selected page

Extension injects
instrumenting script

2
Instrumented browser
records feature use

3

vanilla,example.com,Crypto.getRandomValues(),1

vanilla,example.com,Node.cloneNode(),10
ghostery,example.com,Node.cloneNode(),10

abp,example.com,Crypto.getRandomValues(),1

abp,example.com,Node.cloneNode(),4

Figure 2: One iteration of the feature invocation measure-
ment process.

4.2.1 Measuring Method Calls
The browser extension counts when a method has been

invoked by overwriting the method on the containing object’s
prototype. This approach allows us to shim in our own
logging functionality for each method call, and then call the
original method to preserve the original functionality. We
replace each reference to each instrumented method in the
DOM with an extension managed, instrumented method.

We take advantage of closures in JavaScript to ensure that
web pages are not able to bypass the instrumented methods
by looking up–or otherwise directly accessing–the original
versions of each method.

4.2.2 Measuring Property Writes
Properties were more difficult to instrument. JavaScript

provides no way to intercept when a property has been set or
read on a client script-created object, or on an object created
after the instrumenting code has finished executing. However,
through the use of the non-standard Object.watch()[39]
method in Firefox, we were able to capture when pages
set properties on the singleton objects in the browser (e.g.
window, window.document, window.navigator). Using this
Object.watch() method allowed the extension to capture
and count all writes to properties on singleton objects in the
DOM.

There are a small number of features in the DOM where
we were not able to intercept property writes. We were
therefor unable to count how frequently these features were
used. These features, found primarily in older standards,
are properties where writes trigger side effects on the page.
The most significant examples of such properties are docu-

ment.location (where writing to the property can trigger
page redirection) and Element.innerHTML (where writing
to the property causes the subtree in the document to be
replaced). The implementation of these features in Firefox
make them unmeasurable using our technique. We note them
here as a small but significant limitation of our measurement
technique.

4.2.3 Other Browser Features
Web standards define other features in the browser too,

such as browser events and CSS layout rules, selectors, and
instructions. Our extension-based approach did not allow us



to measure the use of these features, and so counts of their
use are not included in this work.

In the case of standard defined browser events (e.g. onload,
onmouseover, onhover) the extension could have captured
some event registrations through a combination of watching
for event registrations with addEventListener method calls
and watching for property-sets to singleton objects. However,
we would not have been able to capture event registrations
using the legacy DOM0 method of event registration (e.g. as-
signing a function to an object’s onclick property to handle
click events) on non-singleton objects. Since we would only
have been able to see a subset of event registrations, we
decided to omit events completely from this work.

Similarly, this work does not consider non-JavaScript ex-
posed functionality defined in the browser, such as CSS
selectors and rules. While interesting, this work focuses
solely on functionality that the browser allows websites to
access though JavaScript.

4.3 Eliciting Site Functionality
Using our feature-detecting browser extension, we were

able to measure which browser features are used on the 10k
most popular websites. The following subsections describe
how we simulated human interaction with web pages to
measure feature use, first with the browser in its default
state, and again with the browser modified with popular
advertising and tracking blocking extensions.

4.3.1 Default Case
To understand which features are used in a site’s execution,

we installed the instrumenting extension described in Section
4.2 and visited sites from the Alexa 10k, with the goal of
exercising as much of the functionality used on the page as
possible. While some JavaScript features of a site are auto-
matically activated on the home page (e.g. advertisements
and analytics), many features will only be used as a result
of user interaction, either within the page or by navigating
to different areas of the site. Here we explain our strategy
for crawling and interacting with sites.

In order to trigger as many browser features as possible on
a website, we used a common site testing methodology called
“monkey testing”. Monkey testing refers to the strategy of
instrumenting a page to click, touch, scroll, and enter text
on random elements or locations on the page. To accomplish
this, we use a modified version of gremlins.js [61], a library
built for monkey testing front-end website interfaces. We
modified the gremlins.js library to allow us to distinguish
between when the gremlins.js script uses a feature, and when
the site being visited uses a feature. The former feature
usage is omitted from the results described in this paper.

We started our measurement by visiting the home page of
site and allowing the monkey testing to run for 30 seconds.
Because the randomness of monkey testing could cause navi-
gation to other domains, we intercepted and prevented any
interactions which might navigate to a different page. For
navigations that would have been to the local domain, we
noted which URLs the browser would have visited in the
absence of the interception.

We then proceeded in a breadth first search of the site’s
hierarchy using the URLs that would have been visited by
the actions of the monkey testing. We selected 3 of these
URLs that were on the same domain (or related domain, as
determined by the Alexa data), and visited each, repeating

the same 30 second monkey testing procedure and recording
all used features. From each of these 3 sites, we then visited
three more pages for 30 seconds, which resulted in a total of
13 pages interacted with for a total of 390 seconds per site.

If more than three links were clicked during any stage
of the monkey testing process, we selected which URLs to
visit by giving preference to URLs where the path structure
of the URL had not been previously seen. In contrast to
traditional interface fuzzing techniques, which have as a
goal finding unintended or malicious functionality [5, 35], we
were interested in finding all functionalities that users will
commonly interact with. By selecting URLs with different
path-segments, we tried to visit as many types of pages
on the site as possible, with the goal of capturing all of
the functionality on the site that a user would encounter.
The robustness and validity our strategy are evaluated in
Section 6.

4.3.2 Blocking Case
In addition to the default case measurements described in

Section 4.3.1, we also re-ran the same measurements against
the Alexa 10k with an ad blocker (AdBlockPlus) and a
tracking-blocker (Ghostery) to generate a second, ‘blocking’,
set of measurements. We treat these blocking extensions as
representative of the types of modifications users make to
customize their browsing experience. While a so-modified
version of a site no longer represents its author’s intended
representation (and may in fact break the site), the popularity
of these content blocking extensions shows that this blocking
case is a common valid alternative experience of a website.

4.3.3 Automated Crawl

Domains measured 9,733
Total website interaction time 480 days
Web pages visited 2,240,484
Feature invocations recorded 21,511,926,733

Table 1: Amount of data gathered regarding JavaScript
feature usage on the Alexa 10k. “Total website interaction
time” is an estimate based on the number of pages visited
and 30 seconds of page interaction per visit.

For each site in the Alexa 10k, we repeated the above
procedure ten times to ensure we measure all features used
on the page, first five times in the default case, and then
again five times in the blocking case. By parallelizing this
crawl with 64 Firefox installs operating over 4 machines, we
were able to complete the crawl in two days.

We present findings for why five times is sufficient to induce
all types of site functionality in each test case in Section 6.
Table 1 presents some high level figures of this automated
crawl. For 267 domains, were unable to measure feature usage
for a variety of reasons, including non-responsive domains
and sites that contained syntax errors in their JavaScript
code that prevented execution.

5. RESULTS
In this section we discuss our findings, including the pop-

ularity distribution of JavaScript features used on the web
with and without blocking, a feature’s popularity in relation
to its age, which features are disproportionately blocked, and
which features are associated with security vulnerabilities.



5.1 Definitions
This work uses the term feature popularity to denote

the percentage of sites that use a given feature at least once
during automated interaction with the site. A feature that is
used on every site has a popularity of 1, and a feature that
is never seen has a popularity of 0.

Similarly, we use the term standard popularity to de-
note the percentage of sites that use at least one feature from
the standard at least once during the site’s execution.

Finally, we use the term block rate to denote how fre-
quently a feature would have been used if not for the presence
of an advertisement- or tracking-blocking extension. Browser
features that are used much less frequently on the web when
a user has AdBlock Plus or Ghostery installed have high
block rates, while features that are used on roughly the same
number of websites in the presence of blocking extensions
have low block rate.

5.2 Standard Popularity
In this subsection, we present measurements of the popu-

larity of the standards in the browser, first in general, then
followed by comparisons to the individual features in each
standard, the popularity of sites using each standard, and
when the standard was implemented in Firefox.

5.2.1 Overall

0%

25%

50%

75%

100%

0 2500 5000 7500 10000

Sites using a standard

P
or

tio
n 

of
 a

ll 
st

an
da

rd
s

Figure 3: Cumulative distribution of standard popularity
within the Alexa 10k.

Figure 3 displays the cumulative distribution of standard
popularity. Some standards are extremely popular, and
others are extremely unpopular: six standards are used on
over 90% of all websites measured, and a full 28 of the 75
standards measured were used on 1% or fewer sites, with
eleven not used at all. Standard popularity is not feast or
famine however, as standards see several different popularity
levels between those two extremes.

5.2.2 By Feature
We find that browser features are not equally used on

the web. Some features are extremely popular, such as the
Document.prototype.createElement method, which allows

sites to create new page-elements. The feature is used on
9,079–or over 90%–of pages in the Alexa 10k.

Other browser features are never used. 689 features, or
almost 50% of the 1,392 implemented in the browser, are
never used in the 10k most popular sites. A further 416
features are used on less than 1% of the 10k most popular
websites. Put together, this means that over 79% of the
features available in the browser are used by less than 1% of
the web.

We also find that browser features do not have equal
block rates; some features are blocked by advertisement and
tracking blocking extensions far more often than others. 10%
of browser features are prevented from executing over 90%
of the time when browsing with common blocking extensions.
We also find that 1,159 features, or over 83% of features
available in the browser, are executed on less than 1% of
websites in the presence of popular advertising and tracking
blocking extensions.

5.3 Versus Site Popularity

●

●

●

●

●
●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

DOM4

DOM−PS
H−HI

TC
0%

25%

50%

75%

100%

0% 25% 50% 75%

Portion of all websites

P
or

tio
n 

of
 a

ll 
w

eb
si

te
 v

is
its

Figure 4: Comparison of percentage of sites using a standard
versus percentage of web traffic using a standard.

The results described in this paper give equal weight to
all sites in the Alexa 10k. If the most popular and least pop-
ular sites use the same standard, both uses of that standard
are given equal consideration. In this section we examine
the accuracy of this assumption by measuring the differ-
ence between the number of sites using a standard, and the
percentage of site visits using a standard.

Figure 4 shows the results of this comparison. The x-axis
shows the percentage of sites that use at least one feature from
a standard, and the y-axis shows the estimated percentage
of site views on the web that use this standard. Standards
above the x=y line are more popular on frequently visited
sites, meaning that the percentage of page views using the
standard is greater than the percentage of sites using the
standard. A site on the x=y line indicates that the feature is
used exactly as frequently on popular sites as on less popular
sites.

Generally, the graph shows that standard usage is not
equally distributed, and that some standards are more popu-
lar with frequently visited sites. However, the general trend



appears to be for standards to cluster around the x=y line,
indicating that while there are some differences in standard
usage between popular and less popular sites, they do not
affect our general analysis of standard usage on the web.

Therefore, for the sake of brevity and simplicity, all other
measures in this paper treat standard use on all domains as
equal, and do not consider a site’s popularity.

In addition to the datasets used in this paper, we have
also collected data from even-less popular sites from the
Alexa one-million, sites with rank less than 10k, to determine
whether feature usage in less popular portions of the web
differs significantly from feature usage patterns in the Alexa
10k. That measurement found no significant difference in
feature usage. We therefore, as a simplifying assumption,
treat the Alexa 10k as representative of the web in general.

●
●

●

●●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

AJAX

H−P

SLC

V0

2500

5000

7500

2006 2008 2010 2012 2014 2016

Standard introduction date

S
ite

s 
us

in
g 

st
an

da
rd

●● block rate < 33%
33% < block rate < 66%
66% < block rate

Figure 5: Comparison of a standard’s availability date, and
its popularity.

5.4 By Introduction Date
We also measured the relationship between when a stan-

dard became available in the browser, its popularity, and
how frequently its execution is prevented by popular blocking
extensions.

As the graph shows, there is no simple relationship between
when a standard was added to the browser, how frequently
the standard is used on the web, and how frequently the
standard is blocked by common blocking extensions. How-
ever, as Figure 5 indicates, some standards have become
extremely popular over time, while others, both recent and
old, have languished in disuse. Further, it appears that some
standards have been introduced extremely recently but have
nevertheless been readily adopted by web authors.

Old, Popular Standards. For example, point AJAX depicts
the XMLHttpRequest [57], or AJAX standard, used to send
information to a server without refetching the entire docu-
ment. This standard has been available in the browser for
almost as long as Firefox has been released (since 2004), and
is extremely popular; the standard’s most popular feature,
XMLHttpRequest.prototype.open, is used by 7,955 sites in
the Alexa 10k. Standards in this portion of the graph have
been in the browser for a long time, and appear on a large

fraction of sites. This cluster of standards have block rates
of less than 50%, considered low in this study.

Old, Unpopular Standards. Other standards, despite existing
in the browser nearly since Firefox’s inception, are much
less popular on the web. Point H-P shows the HTML:
Plugins [22] standard, a subsection of the larger HTML stan-
dard that allows document authors to detect the names
and capabilities of plugins installed in the browser (such
as Flash, Shockwave, Silverlight, etc.). The most popular
features of this standard have been available in Firefox since
2005. However, the standard’s most popular feature, Plug-
inArray.prototype.refresh, which checks for changes in
browser plugins, is used on less than 1% of current websites
(90 sites).

New, Popular Standards. Point SEL depicts the Selectors
API Level 1 [58] standard, which provides site authors with
a simplified interface for selecting elements in a document.
Despite being a relatively recent addition to the browser
(the standard was added in 2013), the most popular feature
in the standard–Document.prototype.querySelectorAll–is
used on over 80% of websites. This standard, and other
standards in this area of the graph, have low block rates.

New, Unpopular Standards. Point V shows the Vibration [30]
standard, which allows site authors to trigger a vibration in
the user’s device on platforms that support it. Despite this
standard having been available in Firefox longer than the
previously mentioned Selectors API Level 1 standard, the Vi-
bration standard is significantly less popular on the web. The
sole method in the standard, Navigator.prototype.vibrate,
is used only once in the Alexa 10k.

5.5 Standard Blocking
Many users alter their browsing environment when visit-

ing websites. They do so for a variety of reasons, including
wishing to limit advertising displayed on the pages they read,
reducing their exposure to malware distributed through ad-
vertising networks, and increasing their privacy by reducing
the amount of tracking they experience online. These browser
modifications are typically made by installing browser exten-
sions.

We measured the effect of installing two common browser
extensions, AdBlock Plus and Ghostery, on the type and
number of features that are executed when visiting websites.

5.5.1 Popularity vs. Blocking
Ad and tracking blocking extensions do not block the use

of all standards equally; some standards are blocked far
more of often that others. Figure 6 depicts the relationship
between a standards’s popularity (represented by the number
of sites the standard was used on, log scale) and its block rate.
Since a standard’s popularity is the number of sites where a
feature in a standard is used at least once, the popularity of
the standard is equal to at least the popularity of the most
popular feature in the standard.

Each quadrant of the graph tells a different story about
the popularity and the block rate of a standard on the web.

Popular, Unblocked Standards. The upper-left quadrant con-
tains the standards that occur very frequently on the web,
and are rarely blocked by advertising and tracking blocking



AJAX

ALS

BA BE

CO

CSS−CR

CSS−FO

CSS−OM

CSS−VM

DO

DOM

DOM1

DOM2−C
DOM2−E

DOM2−H

DOM2−S

DOM2−T

DOM3−C

DOM3−X

DOM4

DOM−PS

DU

E

EC

EME

F

FA

FULL

GEO

GIM

GP

H−B

H−C

H−CM

H−HI

H−P

HRTHTML HTML5

HTML51

H−WB

H−WS

H−WW

IDB

MCD

MCS

MSE

MSR

NS

NT

PE
PL

PT

PT2

PV

RT

SD

SEL

SLC

SO

SVG

SW

TC

TPE

UIE

URL

UTL

V

WCR

WEBA

WEBGL

WEBVTT

WN
WRTC

10

100

1,000

10,000

0% 25% 50% 75% 100%

Block rate

S
ite

s 
us

in
g 

th
is

 s
ta

nd
ar

d

Figure 6: Popularity of standards versus their block rate, on a log scale.

extensions.
One example, point CSS-OM, depicts the CSS Object

Model [43] standard, which allows JavaScript code to intro-
spect, modify and add to the styling rules in the document.
It is positioned near the top of the graph because 8,193 sites
used a feature from the standard at least once during mea-
surement. The standard is positioned to the left of the graph
because the standard has a low block rate (12.6%), meaning
that the addition of blocking extensions had relatively lit-
tle effect on how frequently sites used any feature from the
standard.

Popular, Blocked Standards. The upper-right quadrant of
the graph shows standards that are used by a large percentage
of sites on the web, but which blocking extensions frequently
prevent from executing.

A representative example of such a standard is the HTML:
Channel Messaging [21] standard, represented by point H-
CM. This standard contains JavaScript methods allowing
embedded documents (iframes) and windows to communi-
cate with their parent document. This functionality is often
used by embedded-content and popup windows to communi-
cate with the hosting page, often in the context of advertising.
This standard is used on over half of all sites by default, but
is prevented from being executed over 77% of the time in the
presence of blocking extensions.

Unpopular, Blocked Standards. The lower-right quadrant of
the graph shows standards that are rarely used by websites,
and that are almost always prevented from executing by
blocking extensions.

Point ALS shows the Ambient Light Events standard [54],
which defines events and methods allowing a website to react
to changes to the level of light the computer, laptop or mobile
phone is exposed to. The standard is rarely used on the web
(14 out of 10k sites), but is prevented from being executed

100% of the time by blocking extensions.

Unpopular, Unblocked Standards. The lower-left quadrant of
the graph shows standards that were rarely seen in our study,
but which were rarely prevented from executing. Point E
shows the Encodings [56] standard. This standard allows
JavaScript code to read and convert text between different
text encodings, such as reading text from a document encoded
in GBK and inserting it into a website encoded in UTF-8.

The Encodings [56] standard is rarely used on the web, with
only 1 of the Alexa 10k sites attempting to use it. However,
the addition of an advertising or tracking blocking extension
had no affect on the number of times the standard was used;
this sole site still used the Encodings standard when AdBlock
Plus and Ghostery were installed.

5.5.2 Blocking Frequency
As discussed in 5.5.1, blocking extensions do not block

all browser standard usage equally. As Figure 6 shows,
some standards are greatly impacted by installing these
advertising and tracking blocking extensions, while others
are not impacted at all.

For example, the Beacon [20] standard, which allows web-
sites to trigger functionality when a user leaves a page, has
a 83.6% reduction in usage when browsing with blocking
extensions. Similarly, the SVG standard, which includes
functionality that allows for fingerprinting users through font
enumeration2, sees a similar 86.8% reduction in site usage
when browsing with blocking extensions.

Other browser standards, such as the core DOM standards,
see very little reduction in use in the presence of blocking
extensions.

5.5.3 Blocking Purpose

2The SVGTextContentElement.prototype.
getComputedTextLength method



●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

● ●

●

●

●

PT2

UIE
WCR

WRTC

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Ad block rate

Tr
ac

ki
ng

 b
lo

ck
 r

at
e

Sites using feature

● ● ● ●100 101 102 103

Figure 7: Comparison of block rates of standards using
advertising vs. tracking blocking extensions.

In addition to measuring which standards were blocked
by extensions, we also distinguished which extension did
the blocking. Figure 7 plots standards’ block rates in the
presence of an advertising blocking extension (x-axis), versus
standards’ block rates when a tracking-blocking extension is
installed (y-axis).

Points on the x=y line in the graph are standards that
were blocked equally in the two cases, with points closer to
the upper-right corner being blocked more often (in general),
and points closer to the lower-left corner being blocked less
often (in general).

Points to the upper-left of the graph depict standards that
were blocked more frequently by the tracking-blocking ex-
tension than the advertising-blocking extension, while points
to the lower-right of the graph shows standards that were
blocked more frequently by the advertising-blocking exten-
sion.

As the graph shows, some standards, such as WebRTC [9]
(which is associated with attacks revealing the user’s IP ad-
dress), WebCrypto API [25] (which is used by some analytics
libraries to generate identifying nonces), and Performance
Timeline Level 2 [18] (which is used to generate high resolu-
tion time stamps) are blocked by tracking-blocking extensions
more often than they are blocked by advertisement blocking
extensions.

The opposite is true, to a lesser extent, for the UI Events
Specification [19] standard, which specifies new ways that
sites can respond to user interactions.

5.6 Vulnerabilities
Just as all browser standards are not equally popular

on the web, neither are all standards equally associated
with known vulnerabilities in Firefox. Some standards have
been associated with, or implicated in, a large number of
vulnerabilities, while others have not been associated with
any publicly known issues. This subsection presents which
browser standards have been connected to known security
vulnerabilities (in the form of filed CVEs), and the relative
popularity and block rates of those standards.

Column five of table 2 shows the number of CVEs associ-

0%

1%

2%

3%

4%

0 10 20 30 40

Numer of standards used

P
or

tio
n 

of
 a

ll 
si

te
s

Figure 8: Probability density function of number of standards
used by sites in the Alexa 10k.

ated with the standard’s implementation in Firefox within
the last three years. As the table shows, some implemen-
tations of web standards have been associated with a large
number of security bugs even though those standards are not
popular on the web. Other standards are associated with a
large number of security vulnerabilities despite being blocked
by advertising and tracking blocking extensions.

For example, the Web Audio API [4] standard is unpopu-
lar with website authors, and implementing it the browser
though has exposed users to a substantial number of security
vulnerabilities. We observed the Web Audio API standard
in use on fewer that 2% of sites in our collection, but its im-
plementation in Firefox is associated with at least 10 CVEs
in the last 3 years. Similarly, WebRTC [9] is used on less
than 1% of sites in the Alexa 10k, but is associated with 8
CVEs in the last 3 years.

The Scalable Vector Graphics [13] standard is an example
of a frequently blocked standard that has been associated
with a significant number of vulnerabilities. The standard is
very frequently blocked by advertising and tracking blocking
extensions; the standard is used on 1,554 sites in the Alexa
10k, but is prevented from executing in 87% of cases. At
least 14 CVE’s have been reported against Firefox’s imple-
mentation of the standard in the last 3 years.

5.7 Site Complexity
We also evaluated sites based on their complexity. We

define complexity as the number of standards used on a given
website. As Figure 8 shows, most sites use many standards:
between 14 and 32 of the 74 available in the browser. No
site used more than 41 standards, and a second mode exists
around the zero mark, showing that a small but measurable
number of sites use little to no JavaScript at all.

6. VALIDATION
This study measures the features executed over repeated,

automated interactions with a website. We treat these auto-
mated measurements as representative of the features that
would be executed when a human visits the website.

This, our work relies on our automated measurement tech-
nique triggering (at least) the browser functionality a human



Standard Name Abbreviation # Features # Sites Block Rate # CVEs

HTML: Canvas H-C 54 7,061 33.1% 15
Scalable Vector Graphics 1.1 (2nd Edition) SVG 138 1,554 86.8% 14
WebGL WEBGL 136 913 60.7% 13
HTML: Web Workers H-WW 2 952 59.9% 11
HTML 5 HTML5 69 7,077 26.2% 10
Web Audio API WEBA 52 157 81.1% 10
WebRTC 1.0 WRTC 28 30 29.2% 8
XMLHttpRequest AJAX 13 7,957 13.9% 8
DOM DOM 36 9,088 2.0% 4
Indexed Database API IDB 48 302 56.3% 3
Beacon BE 1 2,373 83.6% 2
Media Capture and Streams MCS 4 54 49.0% 2
Web Cryptography API WCR 14 7,113 67.8% 2
CSSOM View Module CSS-VM 28 4,833 19.0% 1
Fetch F 21 77 33.3% 1
Gamepad GP 1 3 0.0% 1
High Resolution Time, Level 2 HRT 1 5,769 50.2% 1
HTML: Web Sockets H-WS 2 544 64.6% 1
HTML: Plugins H-P 10 129 29.3% 1
Web Notifications WN 5 16 0.0% 1
Resource Timing RT 3 786 57.5% 1
Vibration API V 1 1 0.0% 1
Battery Status API BA 2 2,579 37.3% 0
CSS Conditional Rules Module, Level 3 CSS-CR 1 449 36.5% 0
CSS Font Loading Module, Level 3 CSS-FO 12 2,560 33.5% 0
CSS Object Model (CSSOM) CSS-OM 15 8,193 12.6% 0
DOM, Level 1 - Specification DOM1 47 9,139 1.8% 0
DOM, Level 2 - Core Specification DOM2-C 31 8,951 3.0% 0
DOM, Level 2 - Events Specification DOM2-E 7 9,077 2.7% 0
DOM, Level 2 - HTML Specification DOM2-H 11 9,003 4.5% 0
DOM, Level 2 - Style Specification DOM2-S 19 8,835 4.3% 0
DOM, Level 2 - Traversal and Range Specification DOM2-T 36 4,590 33.4% 0
DOM, Level 3 - Core Specification DOM3-C 10 8,495 3.9% 0
DOM, Level 3 - XPath Specification DOM3-X 9 381 79.1% 0
DOM Parsing and Serialization DOM-PS 3 2,922 60.7% 0
execCommand EC 12 2,730 24.0% 0
File API FA 9 1,991 58.0% 0
Fullscreen API FULL 9 383 79.9% 0
Geolocation API GEO 4 174 13.1% 0
HTML: Channel Messaging H-CM 4 5,018 77.4% 0
HTML: Web Storage H-WS 8 7,875 29.2% 0
HTML HTML 195 8,980 4.3% 0
HTML: History Interface H-HI 6 1,729 18.7% 0
Media Source Extensions MSE 8 1,616 37.5% 0
Performance Timeline PT 2 4,690 75.8% 0
Performance Timeline, Level 2 PT2 1 1,728 93.7% 0
Selection API SEL 14 2,575 36.6% 0
Selectors API, Level 1 SLC 6 8,674 7.7% 0
Timing control for script-based animations TC 1 3,568 76.9% 0
UI Events Specification UIE 8 1,137 56.8% 0
User Timing, Level 2 UTL 4 3,325 33.7% 0
DOM4 DOM4 3 5,747 37.6% 0
Non-Standard NS 65 8,669 24.5% 0

Table 2: Popularity and blockrate for the web standards that are used on at least 1% of the Alexa 10k or have at least one
associated CVE advisory in the last three years.
Columns one and two list the name and abbreviation of the standard.
Column three gives the number of features (methods and properties) from that standard that we were able to instrument.
Column four includes the number of pages that used at least one feature from the standard, out of the entire Alexa 10k.
Column five shows the number of sites on which no features in the standard executed in the presence of advertising and
tracking blocking extensions (given that the website executed at least one feature from the standard in the default case),
divided by the number of pages where at least one feature from the standard was executed. In other words, how often the
blocking extensions prevented all features in a standard from executing, given at least one feature would have been used.
Column six shows the number of CVEs associated with this standard’s implementation in Firefox within the last three years.



user’s browser will execute when interacting with the same
website. This section explains how we verified this assump-
tion to be reasonable.

6.1 Internal Validation

Round # Avg. New Standards

2 1.56
3 0.40
4 0.29
5 0.00

Table 3: Average number of new standards encountered on
each subsequent automated crawl of a domain.

As discussed in Section 4.3.1, we applied our automated
measurement technique to each site in the Alexa 10k ten
times, five times in an unmodified browser, and five times
with blocking extensions in place. We measured five times in
each condition with the goal of capturing the full set of func-
tionality used on the site, since the measurement’s random
walk technique means that each subsequent measurement
may encounter different, new parts of the site.

A natural question then is whether five measurements are
sufficient to capture all potentially encountered features per
site, or whether additional measurements are necessary. To
ensure that five measurements were sufficient, we examined
how many new standards were encountered on each round of
measurement. If new standards were still being encountered
in the final round of measurement, it would indicate we
had not measured enough, and that our data painted an
incomplete picture of the types of features used by each site.

Table 3 shows the results of this verification. The first
column lists each round of measurement, and the second
column lists the number of new standards encountered that
had not yet been observed in the previous rounds (averaged
across the entire Alexa 10k). As the table shows, the average
number of new standards observed on each site decreased
with each measurement, until the 5th measurement for each
site, at which point we did not observe any new features
being executed on any site.

From this we concluded that five rounds was sufficient for
each domain, and that further automated measurements of
these sites were unlikely to observe new feature usage.

6.2 External Validation
We also tested whether our automated technique observed

the same feature use as human web users encounter. We
randomly chose 100 sites to visit from the Alexa 10k and
interacted with each for 90 seconds in a casual web brows-
ing fashion. This included reading articles and blog posts,
scrolling through websites, browsing site navigation listings,
etc.

We interacted with the home page of the site (the page
directed to from the raw domain) for 30 seconds, then clicked
on a prominent link we thought a typical human browser
would choose (such as the headline of a featured article) and
interacted with this second page for 30 more seconds. We
then repeated the process a third time, loading a third page
that was interacted with for another 30 seconds.

After omitting pornographic and non-English sites, we
completed this process for 92 different websites. We then

0 1 2 5 7 17
Number of New Standards Observed

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r 

o
f 

D
o
m

a
in

s

77

8
3 2 1 1

Figure 9: Average number of new standards encountered on
each subsequent automated crawl of a domain.

compared the features used during manual interaction with
our automated measurements of the same sites. Figure 9
provides a histogram of this comparison, with the x-axis
showing the number of new standards observed during man-
ual interaction that were not observed during the automated
interaction. As the graph shows, in the majority of cases
(83.7%), no features were observed during manual interaction
that the automated measurements did not catch.

The graph also shows a few outliers, including a very
significant one, where manual interaction triggered standards
that our automated technique did not. On closer inspection,
this outlier was due to the site updating its content between
when we performed the automated measurement and the
manual measurement. The outlier site, buzzfeed.com, is a
website that changes its front page content hour to hour. The
site further features subsections that are unlike the rest of
the site, and can have widely differing functionality, resulting
in very different standard usage over time. We checked to
see if standards were used under manual evaluation of the
outlier that were not observed during automated testing on
the rest of the Alexa 10k, and did not find any.

From this we conclude that our automated measurement
technique did a generally accurate job of elicit the feature
use a human user would encounter on the web, even if the
technique did not perfectly emulate human feature use in all
cases.

7. DISCUSSION
In this section, we discuss the potential ramifications of

these findings, including what our results mean for browser
complexity.

7.1 Popular and Unpopular Browser Features
There are a small number of standards in the browser

that are extremely popular with website authors, providing
features that are necessary for for modern web pages to
function. These standards provide functionality like querying
the document for elements, inspecting and validating forms,
and making client-side page modifications.3.

A much larger portion of the browser’s functionality, how-
ever, is unused by most site authors. Eleven JavaScript-

3All of which are covered by the Document Object Model
(DOM) Level 1 Specification standard, dating back to 1998.



exposed standards in Firefox are completely unused in the
ten-thousand most popular websites, and 28 (nearly 37% of
standards available in the browser) are used by less than 1%
of sites.

While many unpopular standards are relatively new to
the browser, youth alone does not explain the extreme un-
popularity of most features in the browser on the open web.
Lesser used features may be of interest only to those creating
applications which require authentication, or to only small
niches of developers and site visitors.

7.2 Blocked Browser Features
When users employ common advertising and tracking

blocking extensions, they further reduce the frequency and
number of standards that are executed. This suggests that
some standards are primarily used to support the advertising
and tracking infrastructure built into the modern web. When
users browse with these common extensions installed, four
additional standards go unused on the web (a total of 15
standards, or 20% of those available in the browser). An
additional 20 standards become used on less than 1% of
websites (for a total of 31 standards, or 41% of standards in
the browser). 16 standards are blocked over 75% of the time
by blocking extensions.

Furthermore, while content blocker rules do not target
JavaScript APIs directly, that a standard like SVG [13],
used on 16% of the Alexa 10k, would be prevented from
running 87% of the time is circumstantial evidence that
whatever website functionality this enables is not necessary
to the millions of people who use content blocking extensions.
This phenomenon lends credence to what has been called
“the Website Obesity Crisis” - the conjecture that websites
include far more functionality than is actually necessary to
serve users’ goals [12].

The presence of a large amount of unused functionality
in the browser seems to contradict the common security
principal of least privilege, or of giving applications only
the capabilities they need to accomplish their intended task.
This principal exists to limit attack surface and limit the
unforeseen security risks that can come from the unexpected,
and unintended, composition of features. As the list of CVEs
in Figure 2 shows, unpopular and heavily blocked features
have imposed substantial security costs to the browser.

7.3 Future Work
This study develops and validates the use of monkey testing

to elicit browser feature use on the open web. The closed web
(i.e. web content and functionality that is only available after
logging in to a website) may use a broader set of features.
With the correct credentials, the monkey testing approach
could be used to evaluate “closed” websites, although it may
need to be improved with a rudimentary understanding of
site semantics.

Finally, a more complete treatment of the security implica-
tions of these broad APIs would be valuable. In recent years,
plugins like Java and Flash have become less popular, and the
native capabilities of browsers have become more impressive.
The modern browser is a monolithic intermediary between
web applications and user hardware, like an operating sys-
tem. For privacy conscious users or those with special needs
(like on public kiosks, or electronic medical record readers),
understanding the privacy and security implications of this
broad attack surface is important.

8. CONCLUSION
The Web API offers a standardized API for programming

across operating systems and web browsers. This platform
has been tremendously useful in the success of the web as
a platform for content dissemination and application distri-
bution. Feature growth has enabled the modern web, built
on JavaScript and offering functionality like video, games,
and productivity applications. Applications that were once
only possible as native apps or external plugins are now
implemented in JavaScript in the browser.

Over time, more features have been standardized and
implemented in the browser. Some of these features have
been readily adopted by websites to implement new types of
applications; other features are infrequently or never used.

Beyond this popularity divide, however, are features which
are blocked by content blockers in the vast majority of at-
tempted uses. That these features are simultaneously popular
with site authors but overwhelmingly blocked by site users
signals that these features may exist in the browser to serve
the needs of the site author rather than the site visitor.

That these features can even be blocked at all, speaks to the
robustness of the web’s open standards and extensible user
agents. Preventing such functionality in native applications
is far less common and likely more difficult. As the role
of browser and the web continues to grow, the ability of
web users to customize their experience will likely remain an
important aspect of keeping the web user-centric, vibrant,
and successful.

References
[1] Chromium blink mailing list discussion. https://groups.

google.com/a/chromium.org/forum/#!topic/blink-
dev/1wWhVoKWztY, 2014. [Online; accessed 15-February-2016].

[2] Chromium blink web features guidelines. https://dev.
chromium.org/blink#new-features, 2016. [Online; accessed
15-February-2016].

[3] Acar, G., Eubank, C., Englehardt, S., Juarez, M.,
Narayanan, A., and Diaz, C. The web never forgets: Per-
sistent tracking mechanisms in the wild. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security (2014), ACM, pp. 674–689.

[4] Adenot, P., Wilson, C., and Rogers, C. Web audio api.
http://www.w3.org/TR/webaudio/, 2013.

[5] Amalfitano, D., Fasolino, A. R., Tramontana, P.,
De Carmine, S., and Memon, A. M. Using gui ripping
for automated testing of android applications. In Proceed-
ings of the 27th IEEE/ACM International Conference on
Automated Software Engineering (2012), ACM, pp. 258–261.

[6] Apparao, V., Byrne, S., Champion, M., Isaacs, S., Hors,
A. L., Nicol, G., Robie, J., Sharpe, P., Smith, B.,
Sorensen, J., Sutor, R., Whitmer, R., and Wilson,
C. Document object model (dom) level 1 specification.
https://www.w3.org/TR/REC-DOM-Level-1/, 1998. [Online;
accessed 10-May-2016].

[7] Ayenson, M., Wambach, D. J., Soltani, A., Good, N.,
and Hoofnagle, C. J. Flash cookies and privacy ii: Now
with html5 and etag respawning. Available at SSRN 1898390
(2011).

[8] Balebako, R., Leon, P., Shay, R., Ur, B., Wang, Y., and
Cranor, L. Measuring the effectiveness of privacy tools for
limiting behavioral advertising. In Web 2.0 Security and
Privacy Workshop (2012).

https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/1wWhVoKWztY
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/1wWhVoKWztY
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/1wWhVoKWztY
https://dev.chromium.org/blink#new-features
https://dev.chromium.org/blink#new-features
http://www.w3.org/TR/webaudio/
https://www.w3.org/TR/REC-DOM-Level-1/


[9] Bergkvist, A., Burnett, D. C., Jennings, C., Narayanan,
A., and Aboba, B. Webrtc 1.0: Real-time communication
between browser. https://www.w3.org/TR/webrtc/, 2016.
[Online; accessed 10-May-2016].

[10] Black Duck Software Inc. The chromium (google chrome)
open source project on open hub. https://www.openhub.
net/p/chrome/analyses/latest/code_history, 2015. [On-
line; accessed 16-October-2015].

[11] Butkiewicz, M., Madhyastha, H. V., and Sekar, V. Un-
derstanding website complexity: measurements, metrics, and
implications. In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference (2011), ACM,
pp. 313–328.

[12] Ceg lowski, M. The website obesity crisis. http://
idlewords.com/talks/website_obesity.htm, 2015.

[13] Dahlström, E., Dengler, P., Grasso, A., Lilley, C.,
McCormack, C., Schepers, D., and Watt, J. Scalable
vector graphics (svg) 1.1 (second edition). http://www.w3.
org/TR/SVG11/, 2011.

[14] Deveria, A. Can i use. http://caniuse.com/. [Online;
accessed 16-October-2015].

[15] Dorwin, D., Smith, J., Watson, M., and Bateman,
A. Encrypted media extensions. http://www.w3.org/TR/
encrypted-media/, 2015.

[16] Eckersley, P. How unique is your web browser? In Privacy
Enhancing Technologies (2010), Springer, pp. 1–18.

[17] Falahrastegar, M., Haddadi, H., Uhlig, S., and Mortier,
R. Anatomy of the third-party web tracking ecosystem. arXiv
preprint arXiv:1409.1066 (2014).

[18] Grigorik, I., Mann, J., and Wang, Z. Performance timeline
level 2. https://w3c.github.io/performance-timeline/,
2016. [Online; accessed 11-May-2016].

[19] Grigorik, I., Mann, J., and Wang, Z. Ui events. https://
w3c.github.io/uievents/, 2016. [Online; accessed 11-May-
2016].

[20] Grigorik, I., Reitbauer, A., Jain, A., and Mann, J.
Beacon w3c working draft. http://www.w3.org/TR/beacon/,
2015.

[21] Hickson, I., Pieters, S., van Kesteren, A., Jägen-
stedt, P., and Denicola, D. Html: Channel mes-
saging. https://html.spec.whatwg.org/multipage/comms.
html#channel-messaging, 2016. [Online; accessed 10-May-
2016].

[22] Hickson, I., Pieters, S., van Kesteren, A., Jägenstedt,
P., and Denicola, D. Html: Plugins. https://html.spec.
whatwg.org/multipage/webappapis.html#plugins-2, 2016.
[Online; accessed 10-May-2016].

[23] Hors, A. L., Hegaret, P. L., Wood, L., Nicol, G., Robie,
J., Champion, M., and Byrne, S. Document object model
(dom) level 2 core specification. https://www.w3.org/TR/DOM-
Level-2-Core/, 2000. [Online; accessed 10-May-2016].

[24] Hors, A. L., Hegaret, P. L., Wood, L., Nicol, G., Robie,
J., Champion, M., and Byrne, S. Document object model
(dom) level 3 core specification. https://www.w3.org/TR/DOM-
Level-3-Core/, 2004. [Online; accessed 10-May-2016].

[25] Hors, A. L., Hegaret, P. L., Wood, L., Nicol, G., Ro-
bie, J., Champion, M., and Byrne, S. Web cryptography
api. https://www.w3.org/TR/WebCryptoAPI/, 2014. [Online;
accessed 11-May-2016].

[26] Jackson, D. Webgl specification. https://www.khronos.
org/registry/webgl/specs/1.0/, 2014.

[27] Jang, D., Jhala, R., Lerner, S., and Shacham, H. An
empirical study of privacy-violating information flows in
javascript web applications. In Proceedings of the 17th ACM
conference on Computer and communications security (2010),
ACM, pp. 270–283.

[28] Kamkar, S. Evercookie - virtually irrevocable persistent
cookies. http://samy.pl/evercookie/,, 2015. [Online; ac-
cessed 15-October-2015].

[29] Kohno, T., Broido, A., and Claffy, K. C. Remote physical
device fingerprinting. Dependable and Secure Computing,
IEEE Transactions on 2, 2 (2005), 93–108.

[30] Kostiainen, A. Vibration. http://www.w3.org/TR/
vibration/, 2105.

[31] Kostiainen, A., Oksanen, I., and Hazaël-Massieux, D.
Html media capture. http://www.w3.org/TR/html-media-
capture/, 2104.

[32] Krishnamurthy, B., and Wills, C. Privacy diffusion on the
web: a longitudinal perspective. In Proceedings of the 18th
international conference on World wide web (2009), ACM,
pp. 541–550.

[33] Lamouri, M., and Cáceres, M. Screen orientation. http:
//www.w3.org/TR/screen-orientation/, 2105.

[34] Lardinois, F. Google has already removed 8.8m lines of
webkit code from blink. http://techcrunch.com/2013/05/
16/google-has-already-removed-8-8m-lines-of-webkit-
code-from-blink/, 2013. [Online; accessed 12-May-2016].

[35] Liu, B., Nath, S., Govindan, R., and Liu, J. Decaf: de-
tecting and characterizing ad fraud in mobile apps. In 11th
USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 14) (2014), pp. 57–70.

[36] McDonald, A. M., and Cranor, L. F. Survey of the use
of adobe flash local shared objects to respawn http cookies,
a. ISJLP 7 (2011), 639.

[37] Mowery, K., Bogenreif, D., Yilek, S., and Shacham,
H. Fingerprinting information in javascript implementations.
Proceedings of W2SP (2011).

[38] Mowery, K., and Shacham, H. Pixel perfect: Fingerprinting
canvas in html5. Proceedings of W2SP (2012).

[39] Mozilla Developer Network. Object.prototype.watch()
- javascript | mdn. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/
Object/watch. [Online; accessed 16-October-2015].

[40] Mulazzani, M., Reschl, P., Huber, M., Leithner, M.,
Schrittwieser, S., Weippl, E., and Wien, F. Fast and
reliable browser identification with javascript engine finger-
printing. In Web 2.0 Workshop on Security and Privacy
(W2SP) (2013), vol. 5.

[41] Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel,
C., Piessens, F., and Vigna, G. Cookieless monster: Ex-
ploring the ecosystem of web-based device fingerprinting. In
IEEE Symposium on Security and Privacy (2013).

[42] Olejnik, L., Minh-Dung, T., Castelluccia, C., et al. Sell-
ing off privacy at auction. In Annual Network and Distributed
System Security Symposium (NDSS). IEEE (2014).

[43] Pieters, S., and Glazman, D. Css object model (css-om).
https://www.w3.org/TR/cssom-1/, 2016. [Online; accessed
10-May-2016].

[44] Pujol, E., Hohlfeld, O., and Feldmann, A. Annoyed
users: Ads and ad-block usage in the wild. In IMC (2015).

https://www.w3.org/TR/webrtc/
https://www.openhub.net/p/chrome/analyses/latest/code_history
https://www.openhub.net/p/chrome/analyses/latest/code_history
http://idlewords.com/talks/website_obesity.htm
http://idlewords.com/talks/website_obesity.htm
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
http://caniuse.com/
http://www.w3.org/TR/encrypted-media/
http://www.w3.org/TR/encrypted-media/
https://w3c.github.io/performance-timeline/
https://w3c.github.io/uievents/
https://w3c.github.io/uievents/
http://www.w3.org/TR/beacon/
https://html.spec.whatwg.org/multipage/comms.html#channel-messaging
https://html.spec.whatwg.org/multipage/comms.html#channel-messaging
https://html.spec.whatwg.org/multipage/webappapis.html#plugins-2
https://html.spec.whatwg.org/multipage/webappapis.html#plugins-2
https://www.w3.org/TR/DOM-Level-2-Core/
https://www.w3.org/TR/DOM-Level-2-Core/
https://www.w3.org/TR/DOM-Level-3-Core/
https://www.w3.org/TR/DOM-Level-3-Core/
https://www.w3.org/TR/WebCryptoAPI/
https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/
http://samy.pl/evercookie/,
http://www.w3.org/TR/vibration/
http://www.w3.org/TR/vibration/
http://www.w3.org/TR/html-media-capture/
http://www.w3.org/TR/html-media-capture/
http://www.w3.org/TR/screen-orientation/
http://www.w3.org/TR/screen-orientation/
http://techcrunch.com/2013/05/16/google-has-already-removed-8-8m-lines-of-webkit-code-from-blink/
http://techcrunch.com/2013/05/16/google-has-already-removed-8-8m-lines-of-webkit-code-from-blink/
http://techcrunch.com/2013/05/16/google-has-already-removed-8-8m-lines-of-webkit-code-from-blink/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/watch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/watch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/watch
https://www.w3.org/TR/cssom-1/


[45] Rader, E. Awareness of behavioral tracking and information
privacy concern in facebook and google. In Proc. of Sympo-
sium on Usable Privacy and Security (SOUPS), Menlo Park,
CA, USA (2014).

[46] Reavy, M. Webrtc privacy. https://mozillamediagoddess.
org/2015/09/10/webrtc-privacy/, 2015. [Online; accessed
11-May-2016].

[47] Rogoff, Z. We’ve got momentum, but we need
more protest selfies to stop drm in web standards.
https://www.defectivebydesign.org/weve-got-momentum-
but-we-need-more-protest-selfies, 2016. [Online;
accessed 11-May-2016].

[48] Russell, A. Doing science on the web. https://
infrequently.org/2015/08/doing-science-on-the-web/,
2015.

[49] Soltani, A., Canty, S., Mayo, Q., Thomas, L., and Hoof-
nagle, C. J. Flash cookies and privacy. In AAAI Spring
Symposium: Intelligent Information Privacy Management
(2010), vol. 2010, pp. 158–163.

[50] Sorensen, O. Zombie-cookies: Case studies and mitigation.
In Internet Technology and Secured Transactions (ICITST),
2013 8th International Conference for (2013), IEEE, pp. 321–
326.

[51] The MITRE Corporation. CVE-2013-0763.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2013-0763, 2013. [Online; accessed 13-November-2015].

[52] The MITRE Corporation. CVE-2014-1577.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-1577, 2014. [Online; accessed 13-November-2015].

[53] The MITRE Corporation. Common vulnerabilities and ex-
posures. https://cve.mitre.org/index.html, 2015. [Online;
accessed 13-November-2015].

[54] Turner, D., and Kostiainen, A. Ambient light events.
http://www.w3.org/TR/ambient-light/, 2105.

[55] Van Goethem, T., Joosen, W., and Nikiforakis, N. The
clock is still ticking: Timing attacks in the modern web. In
Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (2015), ACM, pp. 1382–
1393.

[56] van Kesteren, A. Encoding standard. https://encoding.
spec.whatwg.org/, 2016. [Online; accessed 11-May-2016].

[57] van Kesteren, A. Xmlhttprequest. https://xhr.spec.
whatwg.org/, 2016. [Online; accessed 10-May-2016].

[58] van Kesteren, A., and Hunt, L. Selectors api level 1. https:
//www.w3.org/TR/selectors-api/, 2013. [Online; accessed
10-May-2016].

[59] Vasilyev, V. fingerprintjs2. https://github.com/Valve,
2015.

[60] World Wide Web Consortium (W3C). All standards and
drafts. http://www.w3.org/TR/, 2015. [Online; accessed 16-
October-2015].

[61] Zaninotto, F. Gremlins.js. https://github.com/marmelab/
gremlins.js, 2016.

https://mozillamediagoddess.org/2015/09/10/webrtc-privacy/
https://mozillamediagoddess.org/2015/09/10/webrtc-privacy/
https://www.defectivebydesign.org/weve-got-momentum-but-we-need-more-protest-selfies
https://www.defectivebydesign.org/weve-got-momentum-but-we-need-more-protest-selfies
https://infrequently.org/2015/08/doing-science-on-the-web/
https://infrequently.org/2015/08/doing-science-on-the-web/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0763
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0763
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1577
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1577
https://cve.mitre.org/index.html
http://www.w3.org/TR/ambient-light/
https://encoding.spec.whatwg.org/
https://encoding.spec.whatwg.org/
https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/
https://www.w3.org/TR/selectors-api/
https://www.w3.org/TR/selectors-api/
https://github.com/Valve
http://www.w3.org/TR/
https://github.com/marmelab/gremlins.js
https://github.com/marmelab/gremlins.js

	1 Introduction
	2 Background
	2.1 Modern Web Features
	2.2 Ads and Tracking Blocking

	3 Data sources
	3.1 Alexa Website Rankings
	3.2 Web API Features
	3.3 Web API Standards
	3.4 Historical Firefox Builds
	3.5 CVEs
	3.6 Blocking Extensions

	4 Methodology
	4.1 Goals
	4.2 Measuring Extension
	4.2.1 Measuring Method Calls
	4.2.2 Measuring Property Writes
	4.2.3 Other Browser Features

	4.3 Eliciting Site Functionality
	4.3.1 Default Case
	4.3.2 Blocking Case
	4.3.3 Automated Crawl


	5 Results
	5.1 Definitions
	5.2 Standard Popularity
	5.2.1 Overall
	5.2.2 By Feature

	5.3 Versus Site Popularity
	5.4 By Introduction Date
	5.5 Standard Blocking
	5.5.1 Popularity vs. Blocking
	5.5.2 Blocking Frequency
	5.5.3 Blocking Purpose

	5.6 Vulnerabilities
	5.7 Site Complexity

	6 Validation
	6.1 Internal Validation
	6.2 External Validation

	7 Discussion
	7.1 Popular and Unpopular Browser Features
	7.2 Blocked Browser Features
	7.3 Future Work

	8 Conclusion

