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SUMMARY

Over the last two decades, the web has grown from a system for delivering static documents,

to the world’s most popular application platform. As the web has become more popular and

successful, browser vendors have added increasingly more functionality into the web platform.

While some of this functionality has proven very useful and allowed site authors to create

applications that users enjoy, a large subset of functionality in the browser goes largely unused.

Another sizable subset of functionality has been leveraged by malicious parties to harm browser

users.

This dissertation presents an effort to improve web privacy and security by applying a cost-

benefit analysis to the Web Application Programming Interface (API), as it is implemented in

popular web browsers. The goal of the work is to apply the principal of “least privilege” to the

web, and restrict websites to functionality they need to carry out user-serving ends. The work

pursues that end through a novel method of measuring the costs and benefits associated with

each standard in the Web API, identifying different high-benefit and low-risk subsets of the

Web API, and evaluating a variety of approaches for restricting websites to these safer subsets.

This dissertation covers four distinct research efforts, each of which contribute to the over-

all goal of improving privacy and security on the web. First, this dissertation describes an

automated technique for measuring Web API use on the web by instrumenting the DOM in a

commodity web browser, automating the browser to interact with websites in a manner that

elicits most of the same feature use as human users encounter, and recording what functionality

xiv



SUMMARY (Continued)

is triggered during this execution. This section also presents the results of applying this auto-

mated recording methodology to the entire Alexa 10k, both in default browser configurations,

and with popular blocking extensions installed.

Second, this work presents a systematic measurement of the costs and benefits of each

standard in the Web API. This work models a standard’s benefit as the percentage of sites on

the web that require the standard to carry out their core, user-serving functionality, and models

a standard’s cost as the security risk the standard poses to users (measured as the number of

recent vulnerabilities relating to the standard’s implementation, the additional complexity the

standard’s implementation brings to the browser code base, and the number of papers in recent

top security conferences and journals that leverage the standard).

Third, this work presents a method to apply these cost-benefit measurements to the web

as it exists today, to try and improve users’ privacy and security. This technique entails the

creation of a Web API-blocking browser extension, that restricts which features current websites

are able to access. This section also presents findings from making this tool available to general

web users.

Finally, this work describes an alternate system for designing web applications that provides

client-enforced privacy and security guarantees. The design of this system builds on the previ-

ously discussed per-standard cost-benefit methodology to determine which Web API features

sites generally need.

Each of these works support the overarching finding that privacy and security on the web can

be improved with only a small cost to the user experience. In contrast to the current practice
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of giving every site access to every feature in the browser (with only minor exceptions), this

work presents a data driven approach to restricting websites to a subset of safer, user-serving

functionality. This dissertation further shows that the privacy and security benefits of enforcing

this “least privilege” approach to the Web API would be meaningful, and real world deployment

of these techniques shows that at least some web users find the approach useful in protecting

their privacy and security.
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CHAPTER 1

INTRODUCTION

Privacy and security on the web can be improved in low-trust, casual browsing scenarios,

with only small effects on usability, by restricting what functionality websites can access. This

work documents a method for identifying browser features that are strong candidates for block-

ing in these casual browsing scenarios, along with ways of applying these findings to protect

web users.

The World Wide Web (WWW) is possibly the world’s largest open system, allowing infor-

mation to be transferred, and individuals to interact, with a speed and ease that would have

been unimaginable only a generation ago. This growth in popularity has occurred alongside an

explosion in the type of functionality provided to websites, as both cause and effect. Where

websites were initially limited to static documents of images and hypertext, websites now ri-

val traditional applications in terms of size and capability. Web applications are frequently

megabytes in size, and can access graphics cards, web cameras, microphones, perform low-level

audio synthesis, and carry out parallel computation, just to name a few examples.

Each of these features brings some plausible benefit to users, and from a narrow point of

view, web users benefit as the web gains more functionality. More functionality means web site

authors can create richer, more capable applications. However, this point of view ignores half

of the ledger.

1
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In practice, feature growth brings both costs and benefits; it benefits users by enabling new

types of web applications that users may enjoy, but harms users by adding risk to the platform.

Increased complexity can harm users by expanding the user’s trusted computing base (making

bugs and vulnerabilities more likely), broadening the attack surface of the platform, and making

information flows more difficult for users to understand.

Instead of providing websites with a maximal set of features, web users would be best served

by restricting what functionality websites can access, and only allow websites to access features

where the benefits outweigh the costs. Put more casually, web browsers should only allow

websites access to functionality when the cargo is worth the freight.

This work presents an attempt to measure the costs and benefits of feature growth in the

browser, both to understand how to improve the web as it exists today, and to explore alternate

ways of deploying web applications with an emphasis on security and privacy. This approach of

improving browser privacy and security by restricting websites to a reduced feature set makes it

very different from most other research in the area, which focuses primarily on either changing

the implementations of a small number of features in the browser or developing new methods

for identifying implementation errors.

1.1 Common Terms Used in Work

This section presents terms that will be used throughout this work. These terms are pre-

sented upfront to ease the reading of the rest of the work.

A browser feature is a piece of functionality, implemented a JavaScript function, method

or property, implemented in a web browser, by a browser vendor. Browser features are intended
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to be used by websites, through JavaScript delivered by the website, to carry out interactiv-

ity and functionality on the website. Examples of browser features include HTMLCanvasEle-

ment.prototype.toBlob, used to read the contents of a <canvas> element in a website into a

string, and Document.prototype.getElementById, used to query an element in a website.

A standard is a set of related features, defined by a standards organization, describing what

features browser vendors should implement, and how those features should function. Standards

generally define many features, intended to be used together to accomplish related goals. For

example, the SVG (1) standard defines features used for creating and modifying Scalable Vector

Graphics (SVG) elements, and the WebGL (2) and WebGL 2.0 (3) standards define features

for performing 3D graphics operations in web pages.

The Web API refers to the set of all the features in all of the standards implemented in

modern web browsers. While at any point in time different browsers will have implemented

different parts of the Web API, those differences tend to be temporary, minor and mainly due

to differing organizational priorities regarding newly introduced standards.

1.2 Contributions

The underlying motivation, and core thesis, of this work, is that privacy and security on

the web can be improved, with only small effects on usability, by restricting what functional-

ity websites can access. This conclusion is built to in four steps, and through the following

contributions:

• A web-scale measurement of how the Web API is used on the web today. This study con-

tained an automated measurement of browser functionality used on sites in the Alexa 10k
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(at time of measurement), with a novel method of distinguishing between features used for

core-site-functionality, and features used for non-user-serving purposes (e.g. advertising

and tracking).

• A comprehensive measurement of the costs and benefits of each standard in the Web API.

This work models a standard’s benefit as the number of sites on the web that require the

standard to carry out the site’s core functionality. It models a standard’s cost in three

ways: as the number of recent publicity disclosed vulnerabilities relating to the standard,

the number of lines of code uniquely needed to implement the standard, and the number

of papers describing attacks that leverage the standard in top security conferences and

journals.

• Findings learned and vulnerabilities discovered in the development and maintenance of a

browser extension to restrict Web API access on the web. This work also presents usability

measurements taken during an in-lab evaluation of the tool, and broader findings from

real-world use of the extension.

• The design and evaluation of Contained Document Format (CDF), a system of developing

and deploying web applications with functionality similar to most modern websites, but

providing client-enforced protections and dataflow guarantees.

1.3 Organization

The remainder of this dissertation is organized in the following manner.

Chapter 2 provides background material on attacks and defenses related to browser security.
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Chapter 3 describes both an automated method for measuring browser feature use on the

web, and the results of applying that technique to the Alexa 10 (as it stood at the time of

measurement). This chapter also includes the description of a method for distinguishing user-

serving feature use from non-user-serving (e.g. advertising and tracking related) feature use.

Chapter 4 presents a method for measuring the costs and benefits of the Web API stan-

dards implemented in modern web browsers, and the results of applying that methodology to

a modern, representative web browser.

Chapter 5 describes efforts to apply the findings from Chapters 3 and 4 to the web as it exists

today, in the form of a publicly-released browser extension that is being used by approximately

1,000 real-world users. This chapter also includes a usability measurement of this browser

extension-approach, comparisons with other popular web security and privacy tools, and the

description of a security vulnerability discovered in popular security and privacy tools as a

result of this work.

Chapter 6 presents the design of an alternative system for developing and deploying web

applications that, building on the findings presented in Chapters 3 and 4, is intended to provide

site authors with the expressiveness needed to design interactive modern web sites, but while

providing client-enforced security and privacy guarantees to web users.

Chapter 7 concludes with some discussion of these findings, and how they could be pursued

further.



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 The Web Application Model

This section provides a brief overview of how web applications are designed, and the role

of the Web API in building modern web applications. This description is not intended to

be comprehensive, but to provide enough context so that the rest of this dissertation can be

understood by readers without experience in web development.

Browsers allow JavaScript code to interact with websites in several steps. First, browsers

parse the received Hyper Text Markup Language (HTML) into a JavaScript accessible data-

structure, that roughly-mirrors the tree-based structure of the original document. This struc-

ture allows JavaScript code to access and modify the document-tree, using JavaScript properties

and functions. These tree-modifying JavaScript features are collectively called the Document

Object Model (DOM) and are standardized across browsers.

Browsers also provide websites access to a large number of JavaScript features that are

not directly related to modifying the document-tree. These features range widely in purpose,

including allowing sites to access device hardware, take high-resolution timing measurements,

and perform network IO. The term “Web API” refers to the union of functionality related to

modifying the rendered HTML document, and these additional JavaScript features.

6
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Modern web applications are thus the combination of two sources of code: first, the Web

API functionality implemented in the browser, and second, the website’s JavaScript code that

uses the Web API to implement the site’s functionality.

Web applications have unique properties that make them difficult to secure. First, every

JavaScript code unit has access to nearly all features in the Web API. There are a few ex-

ceptions, where users are prompted to allow access to certain functionalities, relating to tasks

like accessing hardware devices and geo-locating the user. These restrictions apply to a tiny

fraction of features; websites have access by default to the vast majority of the Web API.

Second, the web application model lacks a formal way of allowing code units to interact.

Instead, all code units are executed in a common namespace, and code units collaborate by

accessing and modifying a single global variable (implemented in the browser as window), or by

modifying the globally accessible representation of the HTML document (implemented in the

browser as window.document). This model makes it difficult to execute a code unit without

allowing it to read and modify the execution environment. All code executed in the page

(whether that code was intended by the page author, loaded by a third party to implement an

advertising system, or maliciously include as part of a Cross-Site Scripting (XSS) attack) gets

equal access to the capabilities, secrets and data available to the website or application.

2.2 Web API Standardization and Growth

The current Web API is the result of many years of growth and standardization. The

standardization process aims to ensure that each browser’s implementation of the Web API
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is compatible and that web developers only need to support a single code base to have their

applications work in all modern browsers.

The current standardization process grew out of frustrations and incompatibilities in earlier

web browsers. The two early major browsers, Netscape’s “Netscape Navigator” and Microsoft’s

“Internet Explorer”, initially provided websites with very different systems for building inter-

active websites. These models differed in ways that were both trivial (e.g. different names for

properties and methods that provided identical functionality) and fundamental (e.g. inverse

event delegation models).

To keep the browsers’ API s from drifting further apart, and to make the web a more

appealing platform for developers, the tasks of standardizing and growing the Web API was

moved from the browser vendors to standards organizations. The two most significant standards

organizations for the web are the World Wide Web Consortium (W3C), which oversaw the

original web standards, and is the main body overseeing the development of new Web API

standards, and the Web Hypertext Application Technology Working Group (WHATWG), which

was formed as a response to what was seen as slow progress in the W3C. Other groups, such as

the Kronos Group and European Computer Manufacturers Association (ECMA), also manage

relevant standards (the WebGL (2) and JavaScript (4) standards, respectively).

2.3 Client Side Browser Defenses

There are many techniques to “harden” the browser by limiting what JavaScript pages are

allowed to execute. These defenses can be split into two categories: those configured by the

user, and those configured by the website author.
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In the user-configured category, Adblock (5) and NoScript (6) are popular browser exten-

sions that control what JavaScript is executed in the browser, based on the Universal Resource

Locator (URL) the JavaScript came from. Adblock’s primary function is to block ads for aes-

thetic purposes, but it can also prevent infection by malware being served in those ads (7; 8).

Adblock blocks feature use by preventing the loading of resources from certain domains.

NoScript decides whether JavaScript can execute, based on the URL the code came from.

By default, NoScript prevents JavaScript execution from all origins, rendering a large swath

of the web unusable. In its default configuration, NoScript allows JavaScript execution from

a built-in set of trusted origins. This built-in allow-list has resulted in a proof of concept

exploit via purchasing expired, allowed domains (9). Beyond these popular tools, IceShield (10)

dynamically detects suspicious JavaScript calls within the browser, and modifies the DOM to

prevent attacks.

The Tor Browser (11) disables, or prompts the user before using a number of, features by

default. Tor Browser disable many JavaScript features, most significantly SharedWorkers (12),

and prompts users before allowing pages to use the Canvas, GamePad API, WebGL, Battery

API, and Sensor standards (13). These particular features are disabled because they enable

techniques which violate the Tor Browser’s security and privacy goals.

Significant work has been done on hardening the browser architectures, to make them more

resilient to malicious applications attempting to exploit implementation errors. Much of this

work focuses on isolating or adding access control checks between different parts of the browser,

to prevent a vulnerability in one part of the browser from imperiling the security of the en-
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tire system. Barth, Weinberger and Song (14) proposed imposing access control checks on

JavaScript properties and functions, to prevent certain classes of cross origin JavaScript at-

tacks. Barth et al. (15) proposed isolating extensions from high risk resources in the browser’s

trusted base through an alternate least-privilege based extension architecture, which has been

adopted as the model for browser extensions in all modern browsers. Grier, Tang and King (16)

proposed further isolating different parts of the browser architecture into different operating

system level processes, and using a minimal “browser kernel” to organize message passing

between the different isolated elements, a model that mirrors micro-kernel operating system ar-

chitectures. Dong et al. (17) though highlighted that such isolation strategies carry with them

significant performance overheads, and proposed a method for evaluating the costs (in terms of

performance) and benefits (in terms of security risk reduction) of different isolation schemes.

On the site-author side, Content Security Policy (CSP) allows server operators to limiting

what kinds of JavaScript functionality, and sources of code, can be executed, through either

Hypertext Transfer Protocol (HTTP) headers, or HTML meta tags. CSP allows web developers

to constrain code on their sites so that potential attack code cannot access functionality deemed

unnecessary or dangerous (18). Conscript is another client-side implementation which allows

a hosting page to specify policies for any third-party scripts it includes (19). There are also a

number of technologies selected by the website author but enforced on the client side, including

Google Caja (20) and GATEKEEPER (21).
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There are also models for enforcing policies to limit functionality outside of the web browser.

Mobile applications use a richer permission model, where permission to use certain features is

asked of the user at either install or run-time (22; 23).

2.4 Ads and Tracking Blocking

Researchers have previously investigated how people use ad blockers. Pujol et al. measured

AdBlock usage in the wild, discovering that while a significant fraction of web users use AdBlock,

most users primarily use its ad blocking, and not its privacy-preserving features (24).

User tracking is an insidious part of the modern web. Recent work by Radler found that users

were less aware of cross-website tracking than they were about of data collection by first party

sites, like Facebook and Google. Radler also found that users who were aware of it had greater

concerns about unwanted access to private information than those who weren’t aware (25).

Tracking users’ web browsing activity across websites is largely unregulated, and a complex

network of mechanisms and businesses have sprung up to provide services in this space (26).

Krishnamurthy and Willis found that aggregation of user-related data is both growing and

becoming more concentrated, i.e. being conducted by a smaller number of companies (27).

Tracking was traditionally done via client-side cookies, giving users a measure of control

over how much they are tracked (i.e. they can always delete cookies). However, a wide variety

of non-cookie tracking measures have been developed that take this control away from users. A

variety of tracking blockers prevent these non-cookie tracking mechanisms, including browser

fingerprinting (28), JavaScript fingerprinting (29; 30), Canvas fingerprinting (31), clock skew

fingerprinting (32), history sniffing (33), cross origin timing attacks (34), evercookies (35), and
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Flash cookie respawning (36; 37). A variety of these tracking behaviors have been observed in

widespread use in the wild (36; 37; 38; 39; 40; 41; 42).

Especially relevant to this work is the use of JavaScript APIs for tracking. While some

API s, such as the Beacon standard (43), are designed specifically for tracking, other APIs were

designed to support benign functionality, but has been co-opted into tracking purposes (31; 44).

Balebako et al. evaluated tools which purport to prevent tracking and found that blocking add-

ons were effective (45).

2.5 Complexity and Security

One core claim of this work is that there is a trade-off between security and functionality.

Systems that provide more functionality generally require more complexity in their implemen-

tations, and more complexity generally means that a system is harder to design, implement

and verify securely. There has been significant work in this area, both in designing security-

critical systems to avoid complexity, to make a secure implementation more likely, and in using

complexity as a predictor of software vulnerability.

Concerning the risk of complexity in secure system design, Saltzer and Schroeder (46) em-

phasized the importance of “economy of mechanism”, or keeping designs as simple as possible,

to make errors easier to detect. This principal has been emphasized in the design of systems gen-

erally (47), and has directly influenced the design of many specific security-sensitive systems,

including operating systems (48; 49), virtual machines (50) and cryptographic systems (51),

among many other areas.
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Similarly, significant work has been done in understanding how complexity relates to soft-

ware implementation vulnerabilities. McCabe (52) developed a graph-based measurement of

software complexity, called “cyclomatic complexity”, as a model of how difficult it would be to

test all possible flows of control in a code unit. This work highlighted just one way that complex

code is more difficult to test, and therefor implement, correctly. Shin and Williams (53) used

McCabe’s technique, along with eight other complexity metrics, and found that the complexity

of a code-unit correlated with whether there were security vulnerabilities in the same code-unit.

Shin et al. (54) took this approach further, and found that complexity, considered with code-

churn (i.e. how many lines of code in a code-unit have changed during a given timespan) and

developer related metrics (e.g. how many developers wrote the code-unit), could be used to

predict future software vulnerabilities.

Other research highlights that some degree of complexity is inescapable when designing

secure systems, potentially more than when designing other systems. After all, designing a

secure system requires implementing the functionality of some potentially insecure system, plus

the additional complexity needed to perform that functionality in a secure or private manner.

Zaman et al. (55) for example, found that fixes for security-related bugs required more code,

and more complex code, than for performance related bugs.

Other researchers highlight the need to exercise caution and care when using code-based

metrics to predict software vulnerabilities. Fenton and Neil (56), for example, critique many

applications of code complexity to predict vulnerability as being overly simplistic, potentially

ignoring the potentially controlling effect of correlated factors, like developer experience or com-
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plexity inherent in the problem-domain. Shepperd (57) found that in many types of software,

techniques like McCabe’s cyclomatic complexity predict vulnerability no better than simpler

measurements, like the number of lines of code used in a code-unit.



CHAPTER 3

MEASURING BROWSER FEATURE USE

This chapter includes excerpts and figures from a preprint version of material that was later

published in Proceedings of 2016 IMC. Snyder, Peter; Ansari, Laura; Taylor, Cynthia; Kanich,

Chris; The dissertation author was the primary investigator and author of this work.

3.1 Introduction

The first step in understanding the security and privacy implications of the current (and

quickly expanding) Web API is to understand what features are being used on the web, and

for what purposes. If every site on the web uses a given Web API feature, that is a suggestive

(though not determinative) signal that a feature may be useful to web users. Conversely, if a

user never visits a website that uses a given Web API feature, then that feature is (trivially)

providing no direct benefit to the user.

The design and development of the web makes these kinds of conceptually simple measure-

ments complex to carry out in practice. First, with the exception of trivial cases, one cannot

simply “download a website” and count invocations of functions calls, the way one might be

able to approximate with traditional applications. Websites are downloaded (and sometimes,

generated) dynamically, one portion at a time, depending on user input. The server side of an

application can even change while the client is interacting with the application! This means

15
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there is no way to meaningfully know if you’ve downloaded the entire web application, making

static analysis of a website difficult, if not impossible.

Similarly, the highly-dynamic nature of JavaScript (how the client-side of web applications

are implemented) means that the language is difficult to statically analyze. Even if one could

download all of the JavaScript code that comprises a web application, its a non-trivial task to

determine what Web API functions are called in a piece of code, let alone determining which

code paths the user would execute during a likely interaction with the website.

To confound matters more, all feature invocations on a website are not equally desirable

to the user. A user may benefit if a feature is being used to, say, render a news story she

wishes to read, while the user might experience harm if the feature is being used to fingerprint

her browser for tracking purposes. A useful measurement of Web API use on the web should

distinguish between these kinds of cases.

Finally, the scale of the internet means that manual interaction is not feasible to measure a

representatively large portion of the web. An automated technique is needed.

For these reasons, determining what Web API features users are likely to encounter on the

web, and distinguishing harmful from beneficial feature invocations, is a difficult problem.

This work presents a solution to this problem, in the form of an automated measurement

technique that interacts with websites in a manner that approximates how humans would inter-

act with the site. By counting which features are invoked during each automated interaction,

we’re able to estimate which features real users would encounter when interacting with a web-

site. We then repeated this automated measurement technique with popular advertising and



17

tracking-blocking extensions installed. Comparing the difference in features that are executed

under these configurations allows us to distinguish user-serving Web API use from non-user-

serving Web API use.

Applying this automated measurement technique to the Alexa 10k answers the original

question; which Web API features do web users use when browsing the web. We find, for

example, that 50% of the Web API features in the browser are never used by the ten thousand

most popular websites, when users are browsing in low trust, non-authenticated scenarios.

We were also able to identify features that are used predominantly for non-user-serving

purposes; 10% of Web API features in the browser are blocked 90% of the time when ad and

tracking-blocking extensions are installed, and over 83% of features are executed on less than

1% of websites in the presence of these popular blocking extensions.

The data described in this work has been publicly shared and is freely available. The

dataset contains our measurements of what JavaScript features are used in the Alexa 10k,

both by default browsers, and when ad and tracking blocking extensions are installed. The

database with these measurements, along with documentation describing the database’s schema,

is available online (58).

The rest of this chapter is organized as follows. Section 3.2 describes the data sources used to

conduct this work. Section 3.3 describes the methodology used in this chapter in greater detail,

and Section 3.4 presents the results of this automated measurement, including how frequently

features are used, and which features are blocked by popular blocking extensions. Section 3.5
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describes steps taken to verify that our results are correct, and Section 3.6 concludes with some

discussion of the significance of these results.

3.2 Data Sources

This work relied on several prior existing sets of data. This Section describes these existing

data sets, and how we used them to measure what JavaScript features are used on the modern

web.

3.2.1 Alexa Website Rankings

The Alexa rankings are a well-known ordering of websites by traffic. Researchers typically

use Alexa’s rankings of the worldwide million most popular sites. Alexa also provides other

data about these sites, including popularity rankings at country granularity, breakdowns of

which sub-sites (by fully qualified domain name) are most popular, and a breakdown by page

load and by unique visitor of how many monthly visitors each site gets.

We used the 10,000 top ranked sites from Alexa’s list of the one-million most popular sites

as representative of the web in general. This set of 10,000 websites represents approximately

one-third of all web visits.

3.2.2 Web API Features

As mentioned in Section 1.1, this work uses the term feature to denote a browser capability

that is accessible by calling a JavaScript function or setting a property on a JavaScript object.

We determined the set of JavaScript-exposed features by reviewing the Web Interface Defini-

tion Language (WebIDL) definitions included in the Firefox version 46.0.1 source code. WebIDL
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is a language that defines JavaScript interfaces implemented in browsers. These WebIDL files

are included in the Firefox source.

In the common case, Firefox’s WebIDL files define a mapping between a JavaScript accessible

method or property and the C++ code that implements the underlying functionality1. We

examined each of the 757 WebIDL files in the Firefox and extracted 1,392 relevant methods

and properties implemented in the browser.

3.2.3 Web API Standards

Web standards are documents defining functionality that web browser vendors should im-

plement. They are generally written and formalized by organizations like the W3C, although

occasionally standards organizations delegate responsibility for writing standards to third par-

ties, such as the Khronos group who maintains the current WebGL standard. As mentioned

in Section 1.1, this work uses the term standard to refer to these sets of features, generally

grouped by a common purpose.

There are also web standards that cover non-JavaScript aspects of the browser (such as

parsing rules, what tags and attributes can be used in HTML documents, etc.). This work

focuses only on web standards that define JavaScript exposed functionality.

1In addition to mapping JavaScript to C++ methods and structures, WebIDL can also define
JavaScript to JavaScript methods, as well as intermediate structures that are not exposed to the browser.
In practice though, the primary role of WebIDL is to define a mapping between JavaScript API endpoints
and the underlying implementations, generally in C++.
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We identified 74 standards implemented in Firefox. We associated each of these to a stan-

dards document. We also found 65 API endpoints implemented in Firefox that are not found in

any web standard document, which we associated with a catch-all Non-Standard categorization.

In the case of extremely large standards, we identify sub-standards, which define a subset

of related features intended to be used together. For example, we treat the subsections of the

HTML (59) standard that define the basic Canvas API, or the WebSockets API, as their own

standards.

We treated these significant sub-standards as separate units of analysis because they have

separate, coherent purposes in the Web API, independent of their parent standard. Many of

these significant subs-standards were also implemented in browsers independent of the parent

standard (i.e. browser vendors added support for “websockets” long before they implemented

the full “HTML5” standard).

Some features appear in multiple web standards. For example, the Node.prototype.insertBefore

feature appears in the Document Object Model (DOM) Level 1 Specification (60), Document

Object Model (DOM) Level 2 Core Specification (61) and Document Object Model (DOM) Level

3 Core Specification (62) standards. In such cases, the feature is attributed to the earliest

containing standard.

3.2.4 Historical Firefox Builds

We determined when features were implemented in Firefox by examining the 186 versions of

Firefox that were released between 2004 and when this work was conducted in 2016, and finding
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the earliest version that each of the 1,392 features appeared. We treat the release date of the

earliest version of Firefox that a feature appears in as the feature’s “implementation date”.

Most standards do not have a single implementation date, since in some cases it took months

or years for all features in a standard to be implemented in Firefox. We, therefore, treated the

introduction of a standard’s most popular feature as the standard’s implementation date. For

ties (especially relevant when no feature in a standard is used), we used the date of the earliest

implemented feature.

3.2.5 Blocking Extensions

Finally, this work drew from commercial and crowd-sourced browser extensions, which are

popularly used to modify the browser environment.

This work used two such browser extensions, Ghostery and AdBlock Plus. Ghostery is a

browser extension that allows users to increase their privacy online by modifying the browser

so as to not load resources or set cookies associated with cross-domain passive tracking, as

determined by the extension’s maintainer, Ghostery, Inc..

This work also uses the AdBlock Plus extension, which modifies the browser to not load

resources the extension associates with advertising, and to hide elements in the page that

are advertising related. AdBlock Plus draws from a crowdsourced list of rules and URLs to

determine if a resource is advertising-related.

This work used each extension’s default configuration, including the default rule sets for

which elements and resources to block. No changes were made to the configuration or imple-

mentation of either extension.
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3.3 Measurement Methodology

To understand browser feature use on the open web, we conducted a survey of the Alexa 10k,

visiting each site ten times and recording which browser features were used during each visit.

We visited each site five times with an unmodified browsing environment, and five times with

popular tracking-blocking and advertising-blocking extensions installed. This Section describes

the goals of this survey, followed by how the browser was instrumented to determine which

features were used on a site, and then concludes with how we used our instrumented browser

to measure feature use across the entire Alexa 10k.

3.3.1 Goals

The goal of this automated survey was to determine which browser features are used on the

web as it is commonly experienced by users. This required us to take a broad-yet-representative

sample of the web, and to exhaustively determine the features used by those sites.

To do so, we built a browser extension to measure which features are used when a user

interacts with a website. We then chose a representative sample of the web to visit. Finally,

we developed a method for interacting with these sites in an automated fashion, to elicit the

same functionality that a human web user would experience. Each of these steps is described

in detail in the proceeding subsections.

This automated approach only attempts to measure the “open web”, or the subset of web-

page functionality that a user encounters without logging into a website. Users may encounter

different types of functionality when interacting with websites they have created accounts for
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and established relationships with, but we did not gather such such measurements in this work.

As a result, care should be taken before generalizing the following results to browsing in general.

3.3.2 Measuring Extension

We instrumented a recent version of Firefox (version 46.0.1) with a custom browser extension

that records each time a JavaScript feature is used. The extension achieves this by injecting

JavaScript into each page after the browser has created the DOM for that page, but before the

page’s content has been loaded. By injecting our instrumenting JavaScript into the browser

before the page’s content has been fetched and rendered, we can modify the methods and

properties in the Web API before the visited page’s code executes.

The injected JavaScript modifies the page’s environment to count whenever an instrumented

method is called, or that an instrumented property is written to. How the extension measures

these method calls and property writes is detailed in the following two subsections.

3.3.2.1 Measuring Method Calls

The browser extension counted method invocations by overwriting the method on the con-

taining object’s prototype. This approach allowed us to shim in logging functionality for each

method call, and then call the original method to preserve the original functionality. We re-

placed each reference to each instrumented method in the Web API with an extension managed,

instrumented method.

Our method used JavaScript closures to ensure that web pages were not able to bypass our

instrumented methods by looking up–or otherwise directly accessing–the original versions of

each method.
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3.3.2.2 Measuring Property Writes

Properties were more difficult to instrument. JavaScript provides no clean way to intercept

when a property has been set or read on a client script-created object, or on an object created

after the instrumenting code has finished executing, without affecting the execution of the page.

However, through the use of the non-standard Object.watch() (63) method in Firefox, we were

able to capture when pages set properties on the singleton objects in the browser (e.g. window,

window.document, window.navigator). The Object.watch() method allowed the extension

to capture and count all writes to properties on singleton objects in the Web API.

There are a small number of features in the DOM where we were not able to intercept

property writes. We could not count how frequently these features were used. These features,

found primarily in older standards, are properties where writes trigger side effects on the page.

The most significant examples of such properties are document.location (where writing to the

property can trigger page redirection) and Element.prototype.innerHTML (where writing to

the property causes the subtree in the document to be replaced). The implementation of these

features in Firefox make them unmeasurable using our technique. They are noted here as a

small but significant limitation of our measurement technique.

3.3.2.3 Other Browser Features

Web standards also define other features in the browser, such as browser events and Cascad-

ing Style Sheet (CSS) layout rules, selectors, and instructions. Our extension-based approach

did not allow us to measure the use of these features, so counts of their use are not included in

this work.
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In the case of standard defined events (e.g. onload, onmouseover, onhover), the extension

could have captured some event registrations through a combination of watching for event

registrations with addEventListener method calls and watching for property-sets to singleton

objects. However, we would not have been able to capture event registrations using the legacy

DOM0 method of event registration (e.g. assigning a function to an object’s onclick property

to handle click events) on non-singleton objects. Since we would only have been able to see a

subset of event registrations, we decided to omit events completely from this work.

Similarly, this work does not consider non-JavaScript exposed functionality defined in the

browser, such as CSS selectors and rules. While interesting, this work focuses solely on func-

tionality that the browser allows websites to access though JavaScript.

3.3.3 Eliciting Site Functionality

We then measured which browser features were used on the most popular 10k websites with

our feature-detecting extension. The following subsections describe how we simulated human

interaction with web pages to measure feature use, first with the browser in its default state,

and again with the browser modified with popular advertising and tracking blocking extensions.

3.3.3.1 Default Case

To understand which features are used in a site’s execution, we installed the instrumenting

extension described in Section 3.3.2. We then visited sites from the Alexa 10k, with the goal

of exercising as much of the functionality used on the page as possible. While some JavaScript

features of a site are automatically activated on the home page (e.g. advertisements and ana-

lytics), many code paths will only be used as a result of user interaction, either within the page
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or by navigating to different areas of the site. Thus, an accurate measurement of feature use

requires interacting with and crawling each site. This sub-section describes the strategy used

for crawling and interacting with sites.

In order to trigger as many browser features as possible on a website, we used a common site

testing methodology called “monkey testing”. Monkey testing refers to instrumenting a page to

click, touch, scroll, and enter text on random elements or locations on the page. To accomplish

this, we used a modified version of gremlins.js (64), a library built for monkey testing front-

end website interfaces. We modified the gremlins.js library to distinguish between when the

gremlins.js script used a feature, and when the visited site used a feature. The former feature

use was omitted from further consideration.

Each measurement started by visiting the site’s home page and allowing the monkey testing

to run for 30 seconds. Because the randomness of monkey testing could cause navigation

to other domains, we intercepted and prevented any interactions which might navigate to a

different page. For navigations that would have been to the local domain, we noted which

URLs the browser would have visited in the absence of the interception.

We then executed a breadth first search of the site using the URLs that would have been

visited by the actions of the monkey testing. We selected three of these URLs that were on the

same domain (or related domain, as determined by the Alexa data), and visited each, repeating

the same 30 second monkey testing procedure and recording all used features. From each of

these three sites, we then visited three more pages for 30 seconds, which resulted in a total of

13 pages interacted with, for a total of 390 seconds per site.
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If more than three links were clicked during any stage of the monkey testing process, we

selected which URLs to visit by giving preference to URL s, where the path structure URL had

not been previously visited. In contrast to traditional interface fuzzing techniques, which have as

a goal finding unintended or malicious functionality (65; 66), we aimed to find just the features

site visitors would use. Selecting URLs with different path-segments was a heuristic-based

approach to visit as many types of pages on the site as possible, with the goal of capturing all

of the functionality on the site that a user would encounter. This work discusses the robustness

and validity of this strategy in Section 3.5.

3.3.3.2 Blocking Extension Measurements

We then repeated the same measurement technique with ad-blocking and tracking-blocking

extensions in place (AdBlock Plus and Ghostery, respectively), to generate a second, ‘blocking’,

set of measurements. We treated these blocking extensions as representative of the types of

modifications users make to customize their browsing experience. While a so-modified version

of a site no longer represents its author’s intended representation (and may in fact break the

site), the popularity of these content-blocking extensions shows that this blocking case is a

common valid alternative experience of a website.

3.3.3.3 Automated Crawl

For each site in the Alexa 10k, we repeated the above procedure ten times to measure all

features used on the page: five times in the default case, and then five times in the blocking case.

The crawl took two days, using 64 simultaneous Firefox instances executing on four machines.
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Domains measured 9,733

Total website interaction time 480 days

Web pages visited 2,240,484

Feature invocations recorded 21,511,926,733

TABLE II: AMOUNT OF DATA GATHERED REGARDING JAVASCRIPT FEATURE USE

ON THE ALEXA 10K.

Section 3.5 discusses why five crawls per site, per condition, were sufficient to induce all

relevant functionality. Table II presents some high level figures of this automated crawl. For

267 domains, we were unable to measure feature usage for a variety of reasons, including

non-responsive domains and sites that contained syntax errors in their JavaScript code that

prevented execution.

3.4 Results

This section presents the results of carrying out the methodology described in Section 3.3

to the Alexa 10k, including measurements of the popularity distribution of JavaScript features

with and without blocking, a feature’s popularity in relation to its age, and which features are

frequently blocked.
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3.4.1 Definitions

This chapter uses the term feature popularity to denote the percentage of sites that use

the feature at least once during automated interaction with the site. A feature that is used on

every site has a popularity of 1, and a feature that is never seen has a popularity of 0.

Similarly, the term standard popularity denotes the percentage of sites that use at least

one feature from the standard at least once during the site’s execution.

Finally, we use the term block rate to denote how frequently a feature would have been

used, if not for the presence of an advertisement- or tracking-blocking extension. Browser

features that are used much less frequently on the web when a user has AdBlock Plus or

Ghostery installed have high block rates. Features that are used on roughly the same number

of websites in the presence of blocking extensions have low block rates.

3.4.2 Standard Popularity

This subsection presents measurements of the popularity of the standards in the browser,

first in general, then followed by comparisons to the individual features in each standard, the

popularity of sites using each standard, and when the standard was implemented in Firefox.

3.4.2.1 Overall

Figure 1 displays the cumulative distribution of standard popularity. Some standards are

extremely popular, others are extremely unpopular: six standards are used on over 90% of

all websites measured, while 28 of the 75 standards measured were used on 1% or fewer sites;

eleven are not used at all. The remaining standards saw intermediate popularity levels.
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Figure 1: Cumulative distribution of standard popularity within the Alexa 10k.

3.4.2.2 Standard Popularity By Feature

Browser features are not equally used on the web. Some features are extremely popular,

such as the Document.prototype.createElement method, used to create new page-elements.

The feature is used on 9,079–or over 90%–of pages in the Alexa 10k.

Other browser features are never used. 689 features, or almost 50% of the measured 1,392,

were never observed on the 10k most popular sites. An additional 416 features are used on less

than 1% of the 10k most popular websites. This means that over 79% of the features available

in the browser are used by less than 1% of the web.

Browser features also do not have equal block rates. Some features are blocked by adver-

tisement and tracking blocking extensions far more often than others. Ten percent of browser

features are prevented from executing over 90% of the time, when browsing with common
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blocking extensions. We also find that 1,159 features, or over 83% of features available in the

browser, are executed on less than 1% of websites in the presence of popular advertising and

tracking blocking extensions.

3.4.3 Standard Popularity vs. Site Popularity
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Figure 2: Comparison of percentage of sites using a standard versus percentage of web traffic

using a standard.

Most of the results presented in this Section give equal weight to all sites in the Alexa 10k.

Put differently, if the most popular and least popular sites use the same standard, both uses

are given equal consideration. This Section considers the difference between the number of sites

using a standard, and the percentage of site visits using a standard.
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Figure 2 presents this comparison. The x-axis shows the percentage of sites that use at least

one feature from a standard, and the y-axis shows the estimated percentage of site views on

the web that use this standard. Standards above the x=y line are more popular on frequently

visited sites, meaning that the percentage of page views using the standard is greater than the

percentage of sites using the standard. A site on the x=y line indicates that the feature is used

exactly as frequently on popular sites as on less popular sites.

The graph, in general, shows that standard usage is not equally distributed, and that some

standards are more popular with frequently visited sites. However, the general trend appears to

be for standards to cluster around the x=y line, indicating that while there are some differences

in standard usage between popular and less popular sites, they do not appear to be substantial.

Therefore, for the sake of brevity and simplicity, all other measures in this paper treat

standard use on all domains as equal, and do not consider a site’s popularity.

In addition to the datasets used in this paper, we also collected data from the less pop-

ular sites in the Alexa one-million (sites with rank less than 10k), to determine whether the

less-popular websites use different features than popular websites. We found no significant

difference between these two groups. The rest of this work, therefore, treats the Alexa 10k as

representative of the web in general, as a simplifying assumption.

3.4.4 Standard Popularity By Introduction Date

We also measured the relationship between when a standard became available in the browser,

its popularity, and how frequently its execution is prevented by popular blocking extensions.
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Figure 3: Comparison of a standard’s availability date, and its popularity.

As the graph shows, there is no simple relationship between when a standard was added to

the browser, how frequently the standard is used on the web, and how frequently the standard is

blocked by common blocking extensions. However, as Figure 3 indicates, some standards have

become extremely popular over time, while others, both recent and old, have languished in

disuse. Furthermore, it appears that some standards have been introduced extremely recently

but have been adopted by many web authors.

Old, Popular Standards: For example, point AJAX depicts the XMLHttpRequest (67),

or AJAX standard, used to send information to a server without fetching the entire document

again. This standard has been available in the browser for almost as long as Firefox has

been released (since 2004), and is extremely popular. The standard’s most popular feature,

XMLHttpRequest.prototype.open, is used by 7,955 sites in the Alexa 10k. Standards in this
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portion of the graph have been in the browser for a long time and appear on a large fraction of

sites. This cluster of standards have block rates of less than 50%, considered low in this study.

Old, Unpopular Standards: Other standards, despite existing in the browser nearly

since Firefox’s inception, are much less popular on the web. Point H-P shows the HTML: Plu-

gins (68) standard, a subsection of the larger HTML standard that allows document authors to

detect the names and capabilities of plugins installed in the browser (such as Flash, Shockwave,

Silverlight, etc.). The most popular features of this standard have been available in Firefox

since 2005. However, the standard’s most popular feature, PluginArray.prototype.refresh,

which checks for changes in browser plugins, is used on less than 1% of current websites (90

sites).

New, Popular Standards: Point SEL depicts the Selectors API Level 1 (69) standard,

which provides site authors with a simplified interface for selecting elements in a document.

Despite being a relatively recent addition to the browser (the standard was added in 2013),

the most popular feature in the standard–Document.prototype.querySelectorAll–is used on

over 80% of websites. This standard, and other standards in this area of the graph, have low

block rates.

New, Unpopular Standards: Point V shows the Vibration (70) standard, which allows

site authors to trigger a vibration in the user’s device on platforms that support it. Despite

this standard having been available in Firefox longer than the previously mentioned Selectors

API Level 1 standard, the Vibration standard is significantly less popular on the web. The sole

method in the standard, Navigator.prototype.vibrate, is used only once in the Alexa 10k.
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3.4.5 Standard Blocking

Many users alter their browsing environment when visiting websites. They do so for a variety

of reasons, including wishing to limit advertising displayed on the pages they read, reducing

their exposure to malware distributed through advertising networks, and increasing their privacy

by reducing the amount of tracking they experience online. These browser modifications are

commonly made by installing browser extensions.

The following sub-sections present the effect of installing two common browser extensions,

AdBlock Plus and Ghostery, on the type and number of features that are executed when visiting

websites.

3.4.5.1 Popularity vs. Blocking

Ad and tracking blocking extensions do not block the use of all standards equally. Figure 4

shows the relationship between a standard’s popularity (represented by the number of sites

the standard was used on, in log scale) and its block rate. Recall that this work measures a

standard’s popularity as the number of sites where a feature in a standard is used at least once.

Therefore, the popularity of the standard is equal to at least the popularity of the most popular

feature in the standard.

Each quadrant of the graph tells a different story about the popularity and the block rate

of a standard on the web.

Popular, Unblocked Standards: The upper-left quadrant contains the standards that

occur very frequently on the web, and are rarely blocked by advertising and tracking blocking

extensions.
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Figure 4: Popularity of standards versus their block rate, on a log scale.

One example, point CSS-OM, depicts the CSS Object Model (71) standard, which allows

JavaScript code to introspect, modify and add to the styling rules in the document. It is

positioned near the top of the graph, because 8,193 sites used a feature from the standard at

least once during the measurement. The standard is positioned to the left of the graph, because

the standard has a low block rate (12.6%). This means that the addition of blocking extensions

had relatively little effect on how frequently sites used any feature from the standard.

Popular, Blocked Standards: The upper-right quadrant of the graph shows standards

that are used by a large percentage of sites on the web, but which blocking extensions frequently

prevent from executing.
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A representative example of such a standard is the HTML: Channel Messaging (72) stan-

dard, represented by point H-CM. This standard contains JavaScript methods allowing em-

bedded documents (iframes) and windows to communicate with their parent document. This

functionality is often used by embedded-content and pop-up windows to communicate with

the hosting page, often in the context of advertising. This standard is used on over half of all

sites by default, but is prevented from being executed over 77% of the time in the presence of

blocking extensions.

Unpopular, Blocked Standards: The lower-right quadrant of the graph shows stan-

dards that are rarely used by websites, and that are almost always prevented from executing

by blocking extensions.

Point ALS shows the Ambient Light Events standard (73), which defines events and meth-

ods allowing a website to react to changes to the level of light the computer, laptop or mobile

phone is exposed to. The standard is rarely used on the web (14 out of 10k sites), but is

prevented from being executed 100% of the time by blocking extensions.

Unpopular, Unblocked Standards: The lower-left quadrant of the graph shows stan-

dards that were rarely seen in our study, and were rarely prevented from executing. Point E

shows the Encodings (74) standard. This standard allows JavaScript code to read and convert

text between different text encodings, such as reading text from a document encoded in GBK

and inserting it into a website encoded in UTF-8.

The Encodings (74) standard is rarely used on the web, with only 1 of the Alexa 10k sites

attempting to use it. However, the addition of an advertising or tracking blocking extension had



38

no affect on the number of times the standard was used; this sole site still used the Encodings

standard when AdBlock Plus and Ghostery were installed.

3.4.5.2 Blocking Frequency

As discussed in 3.4.5.1, blocking extensions do not block all browser standard usage equally.

Figure 4 shows that some standards are greatly impacted by installing advertising and tracking

blocking extensions, while others are not impacted at all.

For example, the Beacon (43) standard, which allows websites to trigger functionality when

a user leaves a page, has a 83.6% reduction in usage when browsing with blocking extensions.

Similarly, the SVG standard, which includes functionality that allows for fingerprinting users

through font enumeration1, sees a similar 86.8% reduction in site usage when browsing with

blocking extensions.

Other browser standards, such as the core DOM standards, see little reduction in use in

the presence of blocking extensions.

3.4.5.3 Blocking Purpose

In addition to measuring which standards were blocked by extensions, we also distinguished

which extension did the blocking. Figure 5 plots standards’ block rates in the presence of an

advertising blocking extension (x-axis), versus standards’ block rates when a tracking-blocking

extension is installed (y-axis).

1The SVGTextContentElement.prototype.getComputedTextLength method
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Figure 5: Comparison of block rates of standards using advertising vs. tracking blocking

extensions.

Points on the x=y line in the graph are standards that were blocked equally in the two cases,

with points closer to the upper-right corner being blocked more often (in general), and points

closer to the lower-left corner being blocked less often (in general).

Points in the upper-left depict standards that were blocked more frequently by the tracking-

blocking extension than the advertising-blocking extension, while points in the lower-right show

standards that were blocked more frequently by the advertising-blocking extension.

As the graph shows, some standards, such as WebRTC (75) (which is associated with

attacks revealing the user’s IP address), WebCrypto API (76) (which is used by some analytics

libraries to generate identifying nonces), and Performance Timeline Level 2 (77) (which is used
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to generate high resolution time stamps) are blocked by tracking-blocking extensions more often

than they are blocked by advertisement blocking extensions.

The opposite is true, to a lesser extent, for the UI Events Specification (78) standard, which

specifies new ways that sites can respond to user interactions.

3.5 Validity

This work measured the features executed over repeated, automated interactions with a

website, in a low-trust, unauthenticated browsing scenario. We treat these automated mea-

surements as representative of the features that would be executed when a human visits the

website in a similar scenario.

Thus, the work relies on the automated measurement technique triggering (at least) the

browser functionality a human user’s browser will execute when interacting with the same

website. This section explains how we verified this assumption to be reasonable.

3.5.1 Internal Validation

As discussed in Section 3.3.3.1, we applied our automated measurement technique to each

site in the Alexa 10k ten times, five times in an unmodified browser, and five times with

blocking extensions in place. We performed five measurements in each condition with the goal

of capturing the full set of functionality used on the site, since the measurement’s random walk

technique means that each subsequent measurement may encounter different, new parts of the

site.

A natural question then is whether five measurements were sufficient to capture all poten-

tially encountered features per site, or whether additional measurements would have triggered
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Round # Avg. New Standards

2 1.56

3 0.40

4 0.29

5 0.00

TABLE III: AVERAGE NUMBER OF NEW STANDARDS ENCOUNTERED ON EACH

SUBSEQUENT AUTOMATED CRAWL OF A DOMAIN.

new standards. To test this, we examined how many new standards were encountered on each

round of measurement. If new standards were still being encountered in the final round of mea-

surement, it would indicate five measurements were insufficient to measure all of the features a

site used.

Table III shows the results of this verification. The first column lists each round of mea-

surement, and the second column lists the number of new standards encountered that had not

yet been observed in the previous rounds (averaged across the entire Alexa 10k). As the table

shows, the average number of new standards observed on each site decreased with each mea-

surement, until the fifth measurement for each site, at which point we did not observe any new

features being executed on any site.
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From this we concluded that five rounds was sufficient for each domain, and that further

automated measurements of these sites were unlikely to observe new feature use.

3.5.2 External Validation
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Figure 6: Histogram of the number of standards encountered on a domain under manual inter-

action that were not encountered under automated interaction.

We also tested whether our automated technique observed the same feature use as human

web users. To do so, we randomly selected 100 sites to visit from the Alexa 10k and interacted

with each of them for 90 seconds in a casual web browsing fashion. This included reading articles

and blog posts, scrolling through websites, browsing site navigation listings, and generally

attempting to exercise what we thought was key functionality on each site.

We interacted with the home page of the site (the page directed to from the raw domain) for

30 seconds, then clicked on a prominent link we thought a typical human browser would choose
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(such as the headline of a featured article) and interacted with this second page for 30 more

seconds. We then repeated the process a third time, loading a third page that was interacted

with for another 30 seconds.

After omitting pornographic and non-English sites, we completed this process for 92 different

websites. We then compared the features used during manual interaction with our automated

measurements of the same sites. Figure 6 is a histogram of this comparison, with the x-

axis showing the number of new standards observed during manual interaction that were not

observed during the automated interaction. As the graph shows, in the majority of cases

(83.7%), no features were observed during manual interaction that the automated measurements

did not catch.

The graph also shows a few outliers, including a very significant one, where manual inter-

action triggered many standards that our automated technique missed. On closer inspection,

this outlier was due to the site updating its content between when we performed the automated

measurement and the manual measurement. The outlier site, buzzfeed.com, is a website that

changes its front page content hour to hour. The site further features subsections that are

unlike the rest of the site, and can have widely differing functionality, resulting in very different

standard usage over time. We checked to see if manual evaluation of this site triggered stan-

dards not observed during automated testing on the rest of the Alexa 10k, and did not find

any.
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From this we concluded that our automated measurement technique did a generally accurate

job of eliciting the feature use a human user would encounter on the web, even if the technique

did not perfectly emulate human feature use in all cases.

3.6 Conclusions

This chapter presents an automated technique for measuring what parts of the Web API

is used in typical low-trust, non-authenticated browsing scenarios, both when using a stock

browser, and when using a browser with popular ad and tracking blocking extensions installed.

This chapter also presents the results of applying the automated measurement technique to the

Alexa 10k.

The most significant results of this work, as it relates to this dissertation’s overarching goal

of improving privacy and security on the web, are two related insights. First, this work shows

there are significant portions of the Web API that are not used when browsing non-trusted

websites (over 50%, as measured by Web API features). This strongly suggests that there is

little benefit for browser users in enabling these features, at least until users have authenticated

with the site, or otherwise established some trust.

Second, this work also documents that there are other parts of the Web API that websites

often want to use, but which are blocked by advertising and tracking extensions. This indicates

that some Web API functionality is primary used for purposes that the users of those web

browsers do not approve of. These frequently-blocked features also seem to provide little benefit

to browser users, at least in the case of non-trust, unauthenticated browsing scenarios.
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Chapter 4 builds on these findings by measuring the costs and benefits each standard in the

Web API carries with it. Chapters 5 and 6 then use these findings to build tools and systems

to better protect the privacy and security of web users.



CHAPTER 4

MEASURING FEATURE COST AND BENEFIT

This chapter includes excerpts and figures from a preprint version of material that was later

published in Proceedings of 2017 AMC CCS. Snyder, Peter; Taylor, Cynthia; Kanich, Chris;

The dissertation author was the primary investigator and author of this work.

4.1 Introduction

A second step in improving web security and privacy is to understand the trade-offs each

standard in the Web API carries with it. Each feature added to the web platform brings some

benefit, by allowing websites to create new types of applications that users may enjoy. Each

new feature also carries some cost, in the form of additional security risk. This risk can take a

variety of forms, such as bugs in the features implementation, or the feature being exploited to

enabling new forms of tracking or privacy loss.

This implies that web users are not best served by browsers with the maximum set of

features, but by browsers that only include features where the benefit of doing so outweighs the

risks.

This chapter presents a measurement of the costs and benefits each standard brings to

web users. This chapter is focused only on a global measurement, or the costs and benefits of

enabling the standard in the browser for all websites. The more complicated question of how

to deal with the fact that costs and benefits may differ by site (i.e. the risk of allowing good-

46
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folks.org to access the Canvas standard may differ from the risk of allowing evil-jerks.net

to access the standard) is considered in Chapter 5.

This chapter builds on the feature-use work presented in Chapter 3 by using Web API use

measurements as one input to a larger framework for assessing per-standard cost and benefit.

After all, how frequently a standard is used on the web is an important signal to understand

if a standard is beneficial to users (a Web API standard that is never used is trivially not

beneficial to the user), but it is only one part of a more complicated story. A standard, for

example, could be used by every site on the internet, but only to carry out functionality the user

does not desire. Conversely, the standard could be used by only a small number of websites,

but it necessary to carry out functionality that drew the users to the website in the first place.

Third, a standard could be both very beneficial to users, but expose the web-user to attacks and

vulnerabilities so severe that she would still be better off without it. In short, understanding

how often a Web API standard is used is just one piece of information needed to assess its

impact on the browser.

On the other hand, improving browser privacy and security cannot be the only goal to

consider when trying to improve web browsers. If one were to set out with so narrow a goal,

then she would end up stripping out all functionality from the browser, since, trivially, a browser

with no functionality cannot be attacked! This is not likely to be seen by anyone but the most

Luddite-minded researcher as an improvement!

The goal then is to identify a subset of the Web API where the benefit to the user outweighs

the associated security and privacy risks. This Chapter builds towards that goal by presenting
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a systematic cost-benefit analysis of each standard in the Web API. By drawing on the mea-

surements described in Chapter 3, this chapter models a standard’s benefit as the number of

websites in Alexa 10k that require that standard to function correctly. Each standard’s costs

is modeled in three ways: first, as a function of the number of previously reported Common

Vulnerabilities and Exposures Advisory (CVE) reports related to the implementation of the

standard, second, as the number of academic papers which leverage the standard to carry out

an attack, and third, as a function of complexity added to the code base by implementing the

standard.

The rest of this chapter is organized as follows: Section 4.2 presents a technique for remov-

ing Web API features from the browser, with a minimal effect on existing code. Section 4.3

describes the full methodology used for measuring the costs and benefits of enabling a Web

API standard in the browser. Section 4.4 presents the results of applying the cost-benefit-

measurement methodology to a representative modern web browser. Section 4.5 discusses this

work’s place in the context of the larger goals of this dissertation.

4.2 Intercepting JavaScript Functionality

This section presents a technique for interposing on, and optionally preventing access to,

Web API features. The technique is novel in the way it attempts to minimize the effect on

existing code that expects the now-removed feature to be present. This approach is used both

in building cost-benefit measurements described in this chapter, and in the implementation of

the browser-hardening extension described in Chapter 5.
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4.2.1 Removing Features from the DOM

Each webpage and iframe gets its own global window object. Changes made to this global

object are shared across all scripts on the same page, but not between pages. Furthermore,

changes made to this global object are seen immediately by all other scripts running in the

page. If one script, for example, deletes or overwrites the window.alert function, no other

scripts on the page will be able to use the alert function, and there is no way they can recover

it.

As a result, earlier code can arbitrarily modify the execution environment seen by later

code. Browsers allow extensions to inject JavaScript code into pages and frames before any

page controlled code runs1. Since extensions can run before any scripts included by the page,

extensions can modify the browser environment for all code executed in any page. The challenge

in removing a feature from the browser environment is not to just prevent pages from reaching

the feature, but to do so in a way that still allows the rest of the code on the page to execute

without introducing errors.

For example, to disable the getElementsByTagName feature, one could simply remove the

getElementsByTagName method from the window.document object. However, this will result

in exceptions to be thrown if future code attempts to call the now-removed method.

1Section 5.3 discusses in much greater detail how and when extensions can modify page execution
environments. This brief discussion is only intended to be enough to support the discussion of how Web
API features can be interposed on.
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1 var ps , p5;

2 ps = document.getElementsByTagName("p");

3 p5 = ps[4];

4 p5.setAttribute("style", "color: red");

5 alert("Success!");

Figure 7: Trivial JavaScript code example, changing the color of the text in a paragraph.

Consider the code in Figure 7: removing the window.document.getElementsByTagName

method will cause an error on line one, as the code is attempting to call the now-missing property

as if it were a function. Replacing getElementsByTagName with a new, empty function solves

the problem on line one, but only pushes the error to line two, unless the function returned an

array of at least length five. Even after accounting for that result, one would need to expect

that the setAttribute method was defined on the fourth element in that array. One could

further imagine that other code on the page may depend on the properties of the return value,

and fail when expectations are not met.

4.2.2 ES6 Proxy Configuration

Our technique solves this problem through a novel use of a new capability introduced in

ES6, the Proxy object. The Proxy object can intercept operations and optionally pass them

along to another object. Relevant to this work, proxy objects also allow code to trap on general

language-operations. Proxies can register functions that fire when the proxy is called like a
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function, indexed into like an array, has its properties accessed like an object, and operated on

in other ways.

We take advantage of the Proxy object’s versatility in two ways. First, we use it to prevent

websites from accessing browser features, without breaking existing code. This use case is

described in detail in Subsection 4.2.3. Second, we use the Proxy object to enforce policies on

runtime created objects. This use case is described in further detail in Subsection 4.2.4.

4.2.3 Proxy-Based Approach

Our technique uses the Proxy object to solve the general problem demonstrated in Sec-

tion 4.2.1. We create a specially configured proxy object that registers callback functions for

all possible JavaScript operations, and have those callback functions return a reference to the

same proxy object. We also handle cases where Web API properties and functions return scalar

values (instead of functions, arrays or higher order objects), by having the proxy coerce to 0,

empty string, or undefined, depending on the context. Thus configured, the proxy object can

validly take on the semantics of any variable in any JavaScript program.

Returning to the example in Figure 7, replacing getElementsByTagName with our proxy will

execute cleanly and the alert dialog on line four will successfully appear. On line one, the proxy

object’s function handler will execute, resulting in the proxy being stored in the ps variable.

On line two, the proxy’s get handler will execute, which also returns the proxy, resulting in the

proxy again being stored in p5. Calling the setAttribute method causes the proxy object to

be called twice, first because of looking up the setAttribute, and then because of the result
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of that look up being called as a function. The end result is that the code executes correctly,

but without accessing the original getElementsByTagName functionality.

The complete proxy-based approach to graceful degradation can be found in the source code

of our browser extension1, which is discussed in detail in Chapter 5.

Most state changing features in the browser are implemented through methods which we

interpose on using the above described method. However, this approach does not work for the

small number of features implemented through property sets. For example, assigning a string

to document.location redirects the browser to the URL represented by the string. When the

property is being set on a singleton object in the browser, as is the case with the document

object, we interpose on property sets by assigning a new “set” function for the property on the

singleton using Object.defineProperty.

4.2.4 Sets on Non-Singleton Objects

A different approach is needed for property sets on non-singleton objects. Property sets on

Web API defined objects can be imposed on by using Object.defineProperty to overwrite the

“get” and “set” attributes of the property. However, this approach does not allow for capturing

the value being set in the “set” case. Therefore, our approach only allows for blocking sets on

non-singleton, Web API defined objects. It can’t be used to make more general, runtime policy

decisions, where decision logic would need to be made at execution time on whether to block

or allow the “set” operation.

1https://github.com/snyderp/web-api-manager
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4.2.5 Limitations

The feature blocking technique described in this section is useful for preventing certain types

of site breakage, but not others. When existing code depends on the “shape” of a removed-

functions return type (e.g. when existing code expects the value returned from a blocked feature

to have a method with a particular name), our technique will prevent unrelated code paths from

breaking. In other, stronger typed languages, this would roughly equate to our feature removal

technique not introducing type errors into existing code, despite us changing the “types” of

values being returned from the blocked features.

However, this feature removal technique will not prevent existing code from breaking that

depends on the semantic value being returned from a now-blocked feature. For example, if a

web application depends on a blocked method returning specific, expected values to transition

to a correct state, then our technique will not keep the program from breaking.

Anecdotally, we observed many more cases of the former than the latter, but mention this

issue here as an important and significant limitation of the technique.

4.3 Methodology

This section presents a general methodology for measuring the costs and benefits of allow-

ing a website to access a Web API standard. We measure per-standard benefit by using the

described feature degradation technique to block page access to the standard, manually brows-

ing sites that use standard, and observing the result. We measure the per-standard cost in

three ways: as a function of the prior research identifying security or privacy issues with the
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standard, the number and severity of associated historical CVEs, and the lines of code needed

to implement that standard.

4.3.1 Representative Browser Selection

This section describes a general methodology for evaluating the cost and benefit of enabling

a Web API standard in web browsers, and then applies that general approach to a specific

browser, Firefox 43.0.1. We use this browser to represent modern web browsers generally for

several reasons.

First, Firefox’s implementation of Web API standards is representative of how Web API

standards are implemented in other popular web browsers (e.g. Chrome, Edge, Safari). These

browsers use WebIDL to define Web API interfaces, and implement the underlying functionality

mostly in C++, with some newer standards implemented in JavaScript. Many modern browsers

even share significant amount of code, both through shared third party libraries and by explicitly

copying code from each other’s projects (for example, very large portions of Mozilla’s WebRTC

implementation is taken or shared with the Chromium project in the form of the “webrtc” and

“libjingle” libraries).

Second, the standardized nature of the Web API means that measures of Web API costs

and benefits performed against one browser will roughly generalize to all modern browsers;

features that are frequently used in one browser will be as popular when using any other recent

browser. Similarly, most of the attacks documented in academic literature exploit functionality

that is operating as specified in these cross-browser standards, making it further likely that this

category of security issue will generalize to all browsers.
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Third, using Firefox allows for a direct comparison with the measurements discussed in

Chapter 3, which were taken with a similar version of Firefox. It also allows for drawing on

other related research conducted on Firefox (e.g. (54)).

Finally, we stress that the approach described in this chapter would work with any modern

browser; the discussed techniques are not tied to Firefox 43.0.1.

4.3.2 Measuring by Standard

To measure the costs and benefits of the Web API, we first identified a large, representative

set of browser features implemented across all modern web browsers. We extracted the 1,392

standardized Web API features implemented in Firefox, and categorized those features into 74

Web API standards, using the same technique as described in Section 3.2.2.

Using the features listed in the W3C’s (and related standards organizations) publications,

we categorized Console.prototype.log and Console.prototype.timeline with the Console

API, SVGFilterElement.apply and SVGNumberList.prototype.getItem with the SVG stan-

dard, and so forth, for each of the 1,392 features. This again mirrors the set of features described

in Section 3.2.3.

We use these 74 standards as our unit of Web API measurement for two reasons. First,

focusing on 74 standards leads to less of a combinatorial explosion when testing different sub-

sets of Web API functionality. Secondly, standards are organized around high level cohesive

purposes, which are easier to convey to users who might be interested in blocking parts of the

Web API. However, the decision to focus on standards also came with some drawbacks, some

of which are discussed later in Section 5.3.2.
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4.3.3 Determining When a Website Needs a Feature

This chapter models how beneficial each Web API standard is by measuring how many

websites require the standard to function. Enabling features that sites do not use provides

little benefit to users. These measurements focus on low-trust, unauthenticated, casual browsing

scenarios, and do not attempt to capture more app-like experiences, like video chat or rich user

to user messaging.

We focus on this casual browsing scenario because it closely matches the situations where

users need to be most careful: when users first visit a new site, and have little basis to judge

the site’s trustworthiness. Users can only gauge whether to trust a site with greater capabilities

once they have some familiarity with it.

Determining if a website needs a feature to function is difficult. If a website does not use a

feature, the site trivially does not need the feature to run correctly. As established in Chapter 3,

most features in the browser fall in this category and are rarely used on the open web.

However, a website may use a feature, but not need it to carry out a user’s goals on the

site. In many cases website will still function as desired (from the perspective of the user), even

after the site is prevented from accessing the functionality the site desires. For example, a blog

may use the Canvas standard to invisibly fingerprint the visitor. If a visitor’s browser prevents

the site from using the Canvas functionality, the visitor will still be able to read the desired

postings on the blog, even though the fingerprinting attempt will fail.

This measure of “need” is intentionally focused on the the perspective of the browser user.

The usefulness of a feature to a website author is not considered beyond the ability of the site
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author to deliver a user-experience to the user. If a site’s functionality is altered (e.g. tracking

code is broken, or the ability to A/B test is hampered) in a way the user cannot perceive, then

we consider this feature as not being needed from the perspective of the browser user, and thus

not needed for the site.

With this insight in mind, we developed a methodology to evaluate whether a website needs

a browser standard to function. We instructed two undergraduate workers to visit the same

website, twice in a row. Each first visit was conducted in an unmodified Firefox browser and

treated as the control condition. The worker was instructed to perform as many different

actions on the page as possible within one minute. (This is in keeping with the average dwell

time a user spends on a website, which is slightly under a minute (79).) On a news site this

might mean skimming articles or watching videos, while on an e-commerce sites it might mean

searching for products and adding them to the cart.

The worker then visits the same site a second time. This time, the worker’s browser is

modified to disable all of the features in a Web API standard, using the technique described

in Section 4.2. For another minute, the worker attempts to perform the same actions they

did during the first visit. They then assign a score to their experience on the site: 1 if there

was no perceptible difference between the control and treatment conditions, 2 if they noticed

differences, but were still able to complete the same tasks as during the control visit, or 3 if

they were not able to complete the same tasks as during the control visit.

We treated a site as broken if the user could not accomplish their intended task (i.e., the

visit was coded as a 3). To account for the inherent subjectivity in this approach, we had
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both workers test the same sites, independently, and record their score without knowledge of

the other’s experience. Our workers averaged a 96.74% agreement ratio. This high agreement

validates that the workers were able to consistently gauge whether Web API standards were

necessary during casual web browsing.

4.3.4 Determining Per-Standard Benefit

We used the above described methodology to determine the benefit of each Web API stan-

dards in four steps.

First, we selected a set of websites to represent the internet as a whole. This work considers

the top 10,000 most popular websites on the Alexa rankings as representative of the web in

general, as of July 1, 2015, when this work began.

Second, for each standard, we randomly sampled 40 sites from the Alexa 10k that use the

standard, using the measurements from Section 3. Where there were less than 40 sites using the

standard, we selected all using sites. Because there are only small differences between the Web

API use of popular and unpopular sites, as described in Section 3.4.3, we made the simplifying

assumption to treat these randomly sampled 40 sites using the standard from the Alexa 10k as

representative of all sites on the web using the standard.

Third, we used the technique described in Section 4.2 to create multiple browser configura-

tions, each with one standard disabled. This yielded 75 different browser configurations (one

configuration with each standard disabled, and one “control” case with all standards enabled).

Fourth, we performed the manual testing described in Section 4.3.3. We carried out the

above process twice for each of the 1,679 sites tested for this purpose, and for each of the 74
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Web API standards. This yielded the site break rate for each Web API standard, defined as

the percentage of times the site broke with the feature disabled, multiplied by how frequently

the standard is used in the Alexa 10k. We then define the benefit of a standard as a function

of its site break rate; the more sites break when a standard is disabled, the more useful the

standard is to a browser user. The results of this measurement are discussed in Section 4.4.

4.3.5 Determining Per-Standard Cost

We measured the security cost of enabling a Web API standard in three ways.

The first cost metric for enabling a Web API standard is as a function of reported CVEs

against the standard’s implementation. Past CVEs are an indicator of present risk for three

reasons. First, multiple past vulnerabilities indicate that the problem domain addressed by

this code is difficult to code securely. These code areas therefor deserve heightened scrutiny,

and carry additional risk. Second, prior research (80; 81) found that bug fixes introduce nearly

as many bugs as they address, suggesting that code that has been previously patched carries

heightened risk for future vulnerabilities. Third, recent industry practices suggest that project

maintainers assess security risk similarly; that codebases with many past vulnerabilities should

be treated with increased caution (82).

Second, we measure a standard’s cost as a function of how many recent academic works

document security and privacy issues in the standard. We searched for attacks leveraging each

Web API standard in security conferences and journals between 2010 and 2015 (i.e. the five

years preceding when this work was conducted).
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Third, we measure a Web API standard ’s cost by the number of lines of code needed solely

to implement the standard in the browser. We base this metric on previous research that found

that code complexity (measured as the number of lines of code in function definitions) has had

moderate predictive power for discovering where future vulnerabilities will occur in the Firefox

codebase (54).

4.3.5.1 CVEs

We determined the number of CVEs previously associated with each Web API standard in

three steps:

First, we searched the MITRE CVE database for all references to Firefox in CVEs issued

between 2010 and 2016, resulting in 1,554 CVE records.

Second, we reviewed these CVEs and discarded 41 CVEs that were predominantly about

other pieces of software, where the browser was only incidentally related (e.g. the Adobe Flash

Player plugin (83), or vulnerabilities in web sites that are exploitable through Firefox (84)).

Third, we examined each of the remaining CVEs to determine if they documented vulnera-

bilities in the implementation of one of the 74 considered Web API standards. This step’s goal

was to exclude vulnerabilities relating to non-Web API parts of the browser, such as the layout

engine, the JavaScript runtime, or networking libraries. We identified 175 CVEs describing

vulnerabilities in Firefox ’s implementation of 39 standards. 13 CVEs document vulnerabilities

in multiple standards.

We identified which Web API standard a CVE related to by reading the text description of

each CVE. We attributed CVEs to Web API standards in the following ways:
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• 117 (66.9%) CVEs explicitly named a Web API standard.

• 32 (18.3%) CVEs named a JavaScript method, structure or interface uniquely related to

a larger standard.

• 21 (12%) CVEs named a C++ class or method uniquely related to the implementation

of a Web API standard, using the methodology described in Section 4.3.5.2.

• 5 (2.8%) CVEs named browser functionality defined by a Web API standard (e.x. several

CVEs described vulnerabilities in Firefox’s handling of drag-and-drop events, which are

covered by the HTML standard (59)).

We were careful to distinguish CVEs associated with Web API functionality from CVEs

associated with lower level functionality. This was done to narrowly measure the cost of only

the Web API implementation of the standard. For example, the SVG standard (1) allows site

authors to use JavaScript to manipulate SVG documents embedded in websites. We counted

CVEs like CVE-2011-2363 (85), a “use-after-free vulnerability” in Firefox’s implementation of

the JavaScript function for manipulating SVG documents, as part of the cost of including the

SVG Web API standard in Firefox. In contrast, CVEs relating to non-Web API aspects of

SVG handing, were excluded from our measurements. For example, CVE-2015-0818 (86), a

privilege escalation bug in Firefox’s SVG rendering, is not related to the Web API1, and so is

not counted in these measurements.

1SVG documents can be rendered statically, without JavaScript interaction.



62

4.3.5.2 Implementation Complexity

The third method used to evaluate the per-standard cost relates to how much complexity

the standard’s implementation adds to the code base. To measure this, we performed a static

analysis of the Firefox source to generate lower-bound code-complexity approximations, as a

count of significant lines of C/C++ code. This measurement rests on the intuition that more

complex implementations carry greater security-costs.

This measurement considers lines of C/C++ code used only to implement the measured

Web API standard. Lines of code shared between multiple standards are ignored in this mea-

surement. We call this metric Effective Lines of Code (ELoC). We compute the ELoC for each

Web API standard in three steps.

First, web built a call graph of Firefox using Mozilla’s DXR tool (87). DXR has two related

functions. First, DXR includes a clang compiler plugin that builds a call graph of C/C++

code bases. Second, DXR provides tools for querying the call graph, most significantly a web

application.1 We used this call graph to understand how code paths depend on each other. We

modified DXR to record the number of lines of code for each function.

Second, we determined the entry points for the standard in the call graph. Each property,

method or interface defined by a Web API standard has two categories of underlying code in

Firefox code, implementation code (hand written code that implements Web API standard’s

functionality), and binding code (programmatically generated C++ code only called by the

1An example of the DXR interface is available at https://dxr.mozilla.org/mozilla-central/

source/.
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JavaScript runtime). Binding code is generated at build time from WebIDL documents. By

mapping each feature in each WebIDL document to a Web API standard, we are able to

associate each binding code function with a Web API standard.

interface BatteryManager {
 readonly charging;
 readonly chargingTime;
 readonly dischargingTime;

};

mozilla::dom::BatteryManagerBinding::
charging

mozilla::dom::BatteryManagerBinding::
chargingTime

mozilla::dom::BatteryManagerBinding::
dischargingTime

mozilla::dom::BatteryManager::
Charging

mozilla::dom::BatteryManager::
ChargingTime

mozilla::dom::BatteryManager::
DischargingTime

1

2

3

3

3

4

4

Standardized interface
description

Automatically generated
binding functions

Functions used exclusively
for implementing the Battery API

Figure 8: An example of applying the graph pruning algorithm to a simplified version of the

Battery API.

Once we determined the call graph entry points for each Web API feature, we used a

recursive graph algorithm to identify the implementation code for each standard. Figure 8

illustrates this approach. First, we programmatically extract the standard’s definitions for its

binding functions, here represented with a a simplified version of the Battery API. Second,

we located the build-time generated binding code the Firefox call graph, here denoted by blue
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nodes. Third, using the call graph, we identified which implementation functions the binding

functions call into, which are denoted by pink nodes. If an implementation-code (pink) node

had only a single incoming edge, we determined that this method / function was only in the

code because of the Web API standard associated with those binding functions.

In the Figure 8 example, the algorithm begins by finding that the only code in the Firefox

code base that calls the Charging and DischargingTime methods are the binding functions

generated by the Battery API standard. The algorithm then marks these methods as uniquely

related to the Battery API. The algorithm then repeats, again looking for nodes with only

callers from known Battery API methods. On the second iteration, the algorithm identifes the

ChargingTime method as solely related to the Battery API standard’s implementation, since

it is only called by functions we know to be solely part of the Battery API ’s implementation.

Thus, the lines implementing all three of these pink implementing functions are used to compute

the ELoC metric for the Battery API.

4.3.5.3 Third Party Libraries

The ELoC algorithm gives a precise lower bound measurement of the lines of code in the

Firefox source included only to implement a given Web API standard. It does not include code

from third-party libraries, which are compiled as a separate step in the Firefox build process,

and thus excluded from DXR’s call-graph.

This limitation was not significant in practice. In nearly all cases, third party libraries are

used in multiple places in the Firefox codebase and cannot be uniquely attributed to any single

standard, and thus are not relevant to our per-standard ELoC counts.
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The sole exception is the WebRTC standard, which uniquely uses over 500k lines of third

party code. While this undercount is large, it too is ultimately not significant to our goal

of identifying high-cost, low-benefit standards, as the high number of vulnerabilities in the

standard (as found in CVEs) and comparatively high ELoC metric already flag the standard

as being high-cost.

4.4 Results

This section presents the results of applying the methodology discussed in Section 4.3 to

Firefox 43.0.1. The section first describes each Web API standard ’s benefit, and follows with

each standard’s cost.

4.4.1 Per-Standard Benefit
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Figure 9: A histogram giving the number of standards binned by the percentage of sites that

broke when removing the standard.
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As explained in Section 4.3.4, our workers conducted up to 40 measurements of websites in

the Alexa 10k known to use each Web API standard. If a standard was observed being used

fewer than 40 times within the Alexa 10k, all sites using that standard were measured. In total,

we did two measurements of 1,684 (website, disabled feature) tuples, one by each worker.

Figure 9 gives a histogram of the break rates for each of the 74 standards measured in

this work. As the graph shows, removing over 60% of the measured standards resulted in no

noticeable effect on the user’s experience.

In some cases, this was because the standard was never observed being used1. In other

cases, it was because the standard is intended to be used in a way that users do not notice2.

Other standards caused a large number of sites to break when removed from the browser.

Disabling access to the DOM 1 standard (which provides basic functionality for modifying the

text and appearance of a document) broke an estimated 69.05% of the web.

A listing of the site break rate for all 74 standards is provided in Table IV.

For emphasis, we note again that these measurements only cover interacting with websites

as an anonymous, unauthenticated user. It is possible that site feature use changes when users

log into websites, since some sites only provide full functionality to registered users.

1e.g. The WebVTT standard, which allows document authors to synchronize text changes with media
playing on the page.

2e.g. The Beacon standard, which allows content authors to trigger code execution when a user
browses away from a website.
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4.4.2 Per-Standard Cost

As described in Section 4.3.5, we measured the cost of a Web API standard being avail-

able in the browser in three ways: first as the number of times the standard is leveraged by

attacks in high quality peer-reviewed research (Section 4.4.2.1), second as the number of CVEs

reported against the standard between 2010 and 2015 (Section 4.4.2.2), and third with a lower

bound estimate of the number of ELoC needed to implement the standard in the browser

(Section 4.4.2.3).

4.4.2.1 Attacks from Related Research

We searched the work published at major research conferences and journals between 2010

and 2015 for research on browser weaknesses related to Web API standards. These papers either

explicitly identified either a Web API standard, or a feature or functionality uniquely related

to a Web API standard. In each case the standard was either necessary for the documented

attack to succeed, or was used to make the attack faster or more reliable. Since academic

attacks emphasize attack novelty, instead of only finding all existing vulnerabilities, the use of

a Web API standard in academic literature suggests that the Web API standard allowed new

browser exploits.

The most frequently cited standard was the High Resolution Time Level 2 (109) standard,

which provides highly accurate, millisecond-resolution timers. Seven papers published since

2013 leverage the standard to break the isolation protections provided by the browser, such as

learning information about the environment the browser is running in (90; 102; 103), learning
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information about other open browser windows (101; 94; 103), and gaining identifying informa-

tion from other domains (34).

Other implicated standards include the Canvas standard, which was identified by researchers

as allowing attackers to persistently track users across websites (38), learn about the browser’s

execution environment (90) or obtain information from other browsing windows (94), and the

Media Capture and Streams standard, which was used by researchers to perform “cross-site

request forgery, history sniffing, and information stealing” attacks (98).

In total we identified 20 papers leveraging 23 standards to attack the privacy and security

protections of the web browser. Citations for these papers are included in Table IV.

4.4.2.2 CVEs
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Figure 10: A scatter plot showing the number of CVEs filed against each standard since 2010,

by how many sites in the Alexa 10k break when the standard is removed.
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Figure 11: A scatter plot showing the number of “high” or “severe” CVEs filed against each

standard since 2010, by how many sites in the Alexa 10k break when the standard is removed.

Vulnerability reports are not evenly distributed across browser standards. Figure 11 com-

pares per-standard benefit (measured by the number of sites that require the standard to

function) on the y-axis, against the number of severe CVEs associated with the standard on

the x-axis. Figure 10 shows a similar plot, but includes all CVEs, not only high and severe

ones. Both figures show the same general relationship between break rate and CVEs.

Points in the upper-left of each figure denote standards that are high benefit and low cost

(i.e. standards that are frequently required on the web but have rarely been implicated in

CVEs). For example, consider the Document Object Model (DOM) Level 2 Events Specification

standard, denoted by DOM2-E in Figure 11. This standard allows website authors to trigger

functionality to occur with common browser events, like button clicks and mouse movement.

This standard is highly beneficial to browser users, being required by 34% of pages to function
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correctly. The standard entails little risk to web users, being associated with zero CVEs since

2010.

Standards in the lower-right section of the figures, by contrast, bring low benefit and high

cost to users, when using CVE counts as a metric for security cost. For example, the WebGL

standard, denoted by WEBGL in Figure 11, allows websites to take advantage of graphics

hardware on the browsing device. Less than 1% of sites in the Alexa 10k need the standard,

but the standard is implicated in 22 high or severe CVEs since 2010. This suggests that the

standard poses a high security risk to users, with little attenuating benefit.

4.4.2.3 Implementation Complexity
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Figure 12: A scatter plot showing the LOC measured to implement each standard, by how

many sites in the Alexa 10k break when the standard is removed.
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The amount of complexity each standard added to the browser code base varied widely.

Figure 12 presents a comparison of each standard’s benefit (measured by the number of sites

that require the standard to function) against and number of lines of code uniquely needed to

implement the standard, using the method described in Section 4.4.2.3.

Points in the upper-left of Figure 12 depict standards that are frequently needed on the web,

but which have relatively non-complex implementations. One example of such a standard is

the DOM-Level 2 Core standard, denoted by DOM2-C. This standard extends the browser’s

basic document modification methods. This standard is needed for 89% of websites to function

correctly, suggesting it is highly beneficial to web users. The standard comes with a low

security cost; our technique identifies only 225 lines of code that are only included to enable

this standard (most of the code that implements this standard is shared by the implementations

of other standards).

Points in the lower-right of the figure depict standards that provide little benefit, but which

are responsible for a great deal of complexity in the browser’s code base. The Scalable Vector

Graphics standard, denoted by SVG, is an example of such a high-cost, low-benefit standard.

The standard allows website authors to dynamically create and interact with embedded SVG

documents through JavaScript. The standard is required for core functionality in approximately

0% of websites on the Alexa 10k, while adding a large amount of complexity to the browser’s

code base (at least 5,949 exclusive lines of code, more than our technique identified for any

other standard).
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4.4.3 Threats to Validity

The main threat to validity in these measurements is the accuracy of our human-executed

casual browsing scenario. Regarding internal validity, the high agreement between the two site-

measuring workers suggests that our technique was constant and replicable. The students who

worked on this project spent over 500 hours combined performing these casual browsing tasks

and recording their results, and while they were completely separated while actively browsing,

they spent a good deal of time comparing notes about how to fully exercise the functionality

of a website within the 70 second time window for each site.

External validity, the extent to which our results can be generalized, is also a concern.

Visiting a website for 70 or fewer seconds encapsulates 80% of all web page visits according

to (79), thus accurately representing a majority of web browsing activity, especially when

visiting untrusted websites. Furthermore, while our experiment does not evaluate functionality

that is only available to authenticated users, we believe that protection against unknown sites—

the content aggregators, pop-up ads, or occasionally consulted websites that a user does not

interact with enough to trust—are precisely the sites that deserve the most caution.

Finally, its possible that future work may find that any one of our three cost metrics may

not correlate well with future vulnerability. For example, it may be that certain Web API

standards are implicated in academic studies because of trends in research, or because new

techniques allow for the exploitation of certain types of vulnerabilities over others. Were this

to be the case, this work would still be useful in understanding each standards’ cost, as in most
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cases, standards that were implicated by one cost-metric were also implicated by one, if not

both, of the other cost-metrics.

4.5 Conclusions

This chapter presented a systematic evaluation of the costs and benefits that each standard

in the Web API brings to browser users in low-trust, non-authenticated situations. This work

measured the benefit of each standard as a function of the number of sites in the Alexa 10k that

require the standard to carry out the site’s main purpose (from the perspective of the browser

user). The work measured the cost of each standard in three ways: first, as the number of peer-

reviewed papers in top security conferences and journals that level the standard in an attack,

second, as the amount of complexity that the standard’s implementation adds to the code base,

and third, as the number of vulnerabilities the standard’s implementation is responsible for.

The significance of this chapter to this dissertation’s overarching goal of improving privacy

and security on the web, is two related insights. First, this work suggests a significant subset of

functionality in the Web API where the cost to users (in terms of security risk) is much higher

than the benefit (in terms of sites that need the functionality to do what users care about).

This, in turn, suggests that web privacy and security could be improved by restricting which

sites can access these low-benefit, high-risk features.

Second, this work documents that a small number of standards in the Web API provide the

majority of the benefit to browser users. These same standards, with a few exceptions, carry

very little security risk. This suggests that an application system based around just these safe,
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core-web features would provide users with most of the benefits of modern web applications,

with significant security and privacy improvements.

The next two chapters follow these insights to build tools and systems that improve the

privacy and security of web users. Chapter 5 pursues the first insight by exploring methods to

restrict which parts of the Web API that existing web applications can access. Chapter 6 builds

on the second insight by exploring new ways of developing and deploying web applications that

restrict websites to core web functionality, and emphasize privacy and security over developer

flexibility and application functionality.
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Standard Name Abbreviation # Alexa 10k Site Break Agree # CVEs # High or % ELoC Enabled

Using Rate % Severe attacks

WebGL WEBGL 852 <1% 93% 31 22 27.43 (88; 89; 90; 91)

HTML: Web Workers H-WW 856 0% 100% 16 9 1.63 (90; 92)

WebRTC WRTC 24 0% 93% 15 4 2.48 (93; 89)

HTML: The canvas element H-C 6935 0% 100% 14 6 5.03 (93; 88; 89; 38; 94; 90; 91)

Scalable Vector Graphics SVG 1516 0% 98% 13 10 7.86

Web Audio API WEBA 148 0% 100% 10 5 5.79 (93; 89)

XMLHttpRequest AJAX 7806 32% 82% 11 4 1.73

HTML HTML 8939 40% 85% 6 2 0.89 (39; 95)

HTML 5 HTML5 6882 4% 97% 5 2 5.72

Service Workers SW 0 0% - 5 0 2.84 (96; 97; 34)

HTML: Web Sockets H-WS 514 0% 95% 5 3 0.67

HTML: History Interface H-HI 1481 1% 96% 5 1 1.04

Indexed Database API IDB 288 <1% 100% 4 2 4.73 (89; 38)

Web Cryptography API WCR 7048 4% 90% 4 3 0.52

Media Capture and Streams MCS 49 0% 95% 4 3 1.08 (98)

DOM Level 2: HTML DOM2-H 8956 13% 89% 3 1 2.09

DOM Level 2: Traversal and Range DOM2-T 4406 0% 100% 3 2 0.04

HTML 5.1 HTML51 2 0% 100% 3 1 1.18

Resource Timing RT 433 0% 98% 3 0 0.10

Fullscreen API FULL 229 0% 95% 3 1 0.12

Beacon BE 2302 0% 100% 2 0 0.23

DOM Level 1 DOM1 9113 63% 96% 2 2 1.66

DOM Parsing and Serialization DOM-PS 2814 0% 83% 2 1 0.31

DOM Level 2: Events DOM2-E 9038 34% 96% 2 0 0.35

DOM Level 2: Style DOM2-S 8773 31% 93% 2 1 0.69

Fetch F 63 <1% 90% 2 0 1.14 (96; 97; 34)

CSS Object Model CSS-OM 8094 5% 94% 1 0 0.17 (39)

DOM DOM 9050 36% 94% 1 1 1.29

HTML: Plugins H-P 92 0% 100% 1 1 0.98 (89; 95)

File API FA 1672 0% 83% 1 0 1.46

Gamepad GP 1 0% 71% 1 1 0.07

Geolocation API GEO 153 0% 96% 1 0 0.26 (99; 100)

High Resolution Time Level 2 HRT 5665 0% 100% 1 0 0.02 (97; 101; 102; 34; 94; 90; 103; 92)

HTML: Channel Messaging H-CM 4964 0% 0.025 1 0 0.40 (104; 105)

Navigation Timing NT 64 0% 98% 1 0 0.09

Web Notifications WN 15 0% 100% 1 1 0.82

Page Visibility (Second Edition) PV 0 0% - 1 1 0.02

UI Events UIE 1030 <1% 100% 1 0 0.47

Vibration API V 1 0% 100% 1 1 0.08

Console API CO 3 0% 100% 0 0 0.59 (90)

CSSOM View Module CSS-VM 4538 0% 100% 0 0 2.85 (95)

Battery Status API BA 2317 0% 100% 0 0 0.15 (93; 89; 39; 106)

CSS Conditional Rules Module Lvl 3 CSS-CR 416 0% 100% 0 0 0.16

CSS Font Loading Module Level 3 CSS-FO 2287 0% 98% 0 0 1.24 (89; 95)

DeviceOrientation Event DO 0 0% - 0 0 0.06 (107; 89)

DOM Level 2: Core DOM2-C 8896 89% 97% 0 0 0.29

DOM Level 3: Core DOM3-C 8411 4% 96% 0 0 0.25

DOM Level 3: XPath DOM3-X 364 1% 97% 0 0 0.16

Encrypted Media Extensions EME 9 0% 100% 0 0 1.91

HTML: Web Storage H-WB 7806 0% 83% 0 0 0.55 (89; 99; 90)

Media Source Extensions MSE 1240 0% 95% 0 0 1.97

Selectors API Level 1 SLC 8611 15% 89% 0 0 0.00

Script-based animation timing control TC 3437 0% 100% 0 0 0.08 (39)

Ambient Light Sensor API ALS 18 0% 89% 0 0 0.00 (39; 108)

TABLE IV: DATA ON ALL 74 MEASURED Web API standards, EXCLUDING 20 STANDARDS WITH A

0% BREAK RATE, 0 ASSOCIATED CVES AND ACCOUNTING FOR LESS THAN ONE PERCENT OF

MEASURED EFFECTIVE LINES OF CODE.

• The standard’s full name

• The abbreviation used when referencing this standard in this work

• The number of sites in the Alexa 10k using the standard (Section 3.4)

• The portion of measured sites that were broken by disabling the standard. (Section 4.3.4)

• The agreement between testers’ evaluation (Section 4.3.4)

• The number of CVEs since 2010 associated with the feature (Section 4.4.2.2)

• The number of CVEs since 2010 ranked as “high” or “severe” (Section 4.4.2.2)

• The percentage of ELoC for this standard, as a percentage of all attributed lines (Section 4.3.5.2)

• Citations for papers describing attacks relying on the standard (Section 4.4.2.1)



CHAPTER 5

RETROFITTING FEATURE-LEVEL ACCESS CONTROLS ON THE

WEB

This chapter includes excerpts and figures from a preprint version of material that was later

published in Proceedings of 2017 AMC CCS. Snyder, Peter; Taylor, Cynthia; Kanich, Chris;

The dissertation author was the primary investigator and author of this work.

5.1 Introduction

The third step towards this dissertation’s over-arching goal of improving web security and

privacy is to consider how the per-standard cost and benefit measurements described in Chap-

ter 4 can be used to improve the web as it exists today. More specifically, it is to explore how

the data and techniques discussed in the previous chapters can be used to better protect web

users, given how websites are currently deployed.

This chapter describes one such effort, through the design and development of a browser-

extension that imposes access controls on which Web API features websites can access. The

tool’s goal is to modify the DOM to prevent websites from accessing features that risk user’s

security and privacy. The extension attempts to limit websites to a minimal set of features,

judged to be high benefit and low cost.

This chapter discusses the design of this tool, a usability evaluation of the tool, and a dis-

covered vulnerability the Firefox and Chrome implementations of the WebExtension standard,

76
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which significantly limits the security and privacy guarantees our extension can enforce. This

vulnerability affects many other privacy-oriented WebExtensions, and most of these tools are

still vulnerable at the time this work is being written.

The rest of this chapter is organized as follows: Section 5.2 describes the design of a browser

extension based on the findings discussed in Chapter 4, along with a usability analysis of the

extension. Section 5.3 presents issues and discoveries that were made after the browser extension

was released to the public and began being used by approximately 1k users.

5.2 Browser Hardening Extension

This section presents efforts at using the cost-benefit measurements from Section 4 to de-

sign and develop a browser extension that allows users to control website access to Web API

functionality. The extension has been released to the public and is being used by almost 1k

users at the time of this writing (555 Firefox users1 and 417 Chrome users2). This section

describes how the extension was designed, evaluated and implemented before it was publicly

released. Section 5.3 discusses lessons and findings that were gained only once the extension

was available for the public.

The source of the extension has been released publicly3, and the project continues to be

refined with the help and input of other developers and privacy activists.

1https://addons.mozilla.org/en-US/firefox/addon/webapi-manager/

2https://chrome.google.com/webstore/detail/webapi-manager/hojoljbhkebfjalcbnfmoiljfidcmcmj

3https://github.com/snyderp/web-api-manager
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5.2.1 Implementation

Our browser extension uses the same Web API standard disabling technique described

in Section 4.2 to dynamically control the Web API functionality exposed to websites. The

extension allows users to apply hardened configurations that we designed (based on the findings

discussed in Section 4 and detailed in Section 5.2.3.1), or design and deploy their own hardened

configurations by selecting any permutation of the measured Web API standards to disable

(along with several additional Web API standards that were deployed since the cost-benefit

measurements were performed).

We emphasize the dynamic nature of the hardened browser configurations for several rea-

sons. First, if a given standard was found to be vulnerable to new attacks in the future, security

sensitive users could update their hardened configurations to remove it. Likewise, if other fea-

tures became more popular or useful to users on the web, future hardened configurations could

be updated to allow those standards. The extension enables users to define their own cost-

benefit balance in the security of their browser, rather than prescribing a specific configuration.

Finally, the tool allows users to create per-origin attack-surface policies, so that trusted

sites can be granted access to more JavaScript-accessible features and standards than unknown

or untrusted websites. Similar to, but finer grained than, the origin based policies of tools like

NoScript, this approach allows users to better limit websites to the least privilege needed to

carry out the sites’ desired functionality.
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5.2.2 Trade-offs and Limitations

Deploying our approach as a browser extension entailed significant trade-offs. On the benefit

side, browser extensions are easy for users to install and update. Our browser extension is

compatible with current popular web browsers, minimizing the amount of additional engineering

work needed to get the approach implemented and usable by security and privacy concerned

users. Additionally, browser extensions are powerful enough to (in principal) successfully protect

users from most vulnerabilities that depend on accessing a JavaScript-exposed method or data

structure (of which there are many, as documented in Section 4.4.2.2). The WebExtension

standard, which standardizes a common interface for writing cross-browser extensions, defines

hooks that allow for disabling large portions of high-risk functionality, which could protect users

from not-yet-discovered bugs, in a way that ad-hoc fixing of known bugs could not.

However, the choice to deploy as an extension also entails significant limitations. First, there

are categories of browser exploits that our extension-based approach cannot guard against.

For example, our approach cannot provide protection against exploits that rely on Web API

functionality that is reachable through means other than JavaScript. The extension would not

provide protection against, for example, exploits in the browser’s CSS parser, TLS code, or

image parsers (since the attacker would not require JavaScript to access such code-paths).

Second, the choice to implement as a browser extension made our approach vulnerable to

a weakness common to all DOM-modifying browser extensions privacy and security tools that

was discovered in this work (discussed in detail in Section 5.3).
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Third, the extension approach does not have access to some information that could be used

to make more sophisticated decisions about when to allow a website to access a feature. An

alternate approach that modified the browser could use factors such as the state of the stack

at call time (e.g. distinguishing between first-and-third party calls to a Web API standard), or

where a function was defined (e.g. whether a function was defined in JavaScript code delivered

over TLS from a trusted website). Because such information is not exposed through JavaScript,

our extension is not able to take advantage of such information.

5.2.3 Usability Evaluation

This section presents an evaluation of the usability of our Web API-standard blocking

extension. The goal of this evaluation was to measure how the extension both improved and

harmed users’ browsing experiences, to see if the extension’s cost (measured in “number of

sites that no longer function correctly”) would be worth the extension’s benefits (measured as

“security risk reduction from blocking Web API standards”).

The extension allows users to develop custom, per-site configurations of which Web API

standards to block. Since there were 74 standards considered in Section 4, there are 274 possible

configurations of the extension, yielding an impossible number of configurations to test for even

a single site, let alone a large enough sample of websites to represent the web as a whole.

Instead, we created and evaluated two plausible extension configurations, based on the data

described in Section 4, to represent users with different privacy needs, and thus users willing to

accept different security/usability trade-offs. The following subsections present an analysis of

the usability of these two selected configurations.



81

5.2.3.1 Selecting Configurations

To address the combinatorial impossibility of evaluating all possible extension configurations

on all sites, we created two configurations to represent configurations that users might create.

We refer to these configurations as the conservative and aggressive configurations, each

intending to represent users with different privacy-functionality trade-offs.

Table V lists the standards we blocked for the conservative and aggressive hardened browser

configurations. Our conservative configuration focuses on removing features that are infre-

quently needed by websites to function, and would be fitting for users who desire more security

than is typical of a commodity web browser, and are tolerant of a slight loss of functionality.

Our aggressive configuration focuses on removing further attack surface from the browser,

even when that necessitates breaking more websites. This configuration would fit highly secu-

rity sensitive environments, where users are willing to accept breaking a higher percentage of

websites in order to gain further security.

We selected these profiles based on the data discussed in Section 3.4, Section 4.4, and

prioritizing not affecting the functionality of the most popular sites on the web. We further

chose to not restrict the Web Crypto standard, to avoid affecting the possibly-security-sensitive

code.

We note that these are just two possible configurations, and that users (or trusted curators,

IT administrators, or other sources) could use this method to find the security / usability

trade-off that best fits their needs.
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5.2.3.2 Configuration Evaluation

We evaluated the usability and the security gains the hardened browser configurations pro-

vided. Table VI shows the results of this evaluation. As expected, blocking more standards

resulted in a more secure browser, but at some cost to usability (measured by the number of

broken sites).

Our evolution was carried out similarly to the per-standard measurement technique de-

scribed in Section 4.3.4. First, we created two sets of test sites, popular sites (the 200 most

popular sites in the Alexa 10k that are in English and not pornographic) and less popular

sites (a random sampling of sites from the Alexa 10k ranked 201 or lower). This yielded 175

test sites in the popular category, and 155 in the less popular category.

Second, we had two evaluators visit each of these 330 websites under three browsing con-

figurations, for 60 seconds each. Our decision to use 60 seconds per page is based on prior

research (79) finding that users on average spend under a minute per page.

These evaluators first visited each site in an unmodified Firefox browser to determine the

author-intended functionality of the website. Second, they visited in a Firefox browser in the

above mentioned conservative configuration. Finally, they visited a third time in the aggressive

hardened configuration.

For the conservative and aggressive tests, the evaluators recorded how the modified browser

configurations affected each page, using the 1–3 scale described in Section 4.3.4. Our evaluators

independently gave each site the same 1–3 ranking 97.6% of the time for popular sites, and 98.3%

of the time for less popular sites, giving us a high degree of confidence in their evaluations. The
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“% Popular sites broken” and “% Less popular sites broken” rows in Table VI give the results

of this measurement.

To further increase our confidence in the reported site-break rates, our evaluators recorded,

in text, what broken functionality they encountered. We then randomly sampled and checked

these textual descriptions, to verify that our evaluators were experiencing similar broken func-

tionality. The consistency we observed through this sampling supports the internal validity of

the reported site break rates.

As Table VI shows, the trade off between gained security and lessened usability is non-linear.

The conservative configuration disabled code paths associated with 52% of previous CVEs, and

removed 50% of ELoC, while affecting the functionally of only 3.87%-7.14% of sites on the

internet. Similarly, the aggressive configuration disabled 71.9% of code paths associated with

previous CVEs and over 70% of ELoC, while affecting the usability of 11.61%-15.71% of the

web.

5.2.3.3 Usability Comparison

We compared the usability of our conservative and aggressive configurations against Tor

Browser Bundle (TBB) and NoScript, to measure how the Web API-blocking approach com-

pared to other popular security and privacy tools. We found that the conservative configuration

had the highest usability of all four tested tools, and that the aggressive hardened configuration

was roughly comparable to the default configuration of the TBB. The results of this comparison

are given in Table VII.
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This comparison does not imply which method is the most secure. The types of security

problems addressed by each of these approaches are largely intended to solve different types of

problems, and all three compose well (i.e., one could use a cost-benefit method to determine

which Web API standards to enable and harden the build environment and route traffic through

the Tor network and apply per-origin rules to script execution). However, since TBB and

NoScript are widely used security tools, comparing against them gives a good baseline for

usability for security conscious users.

We tested the usability using the same technique we used for the conservative and aggressive

browser configurations, described in Section 5.2.3.1. The same two evaluators visited the same

175 popular and 155 less popular sites, but compared the page in an unmodified Firefox browser

with the default configuration of the NoScript extension.

The same comparison was carried out for default Firefox against the default configuration

of the TBB1. The evaluators again reported very similar scores in their evaluation, reaching the

same score 99.75% of the time when evaluating NoScript and 90.35% when evaluating the Tor

Browser. We expect the lower agreement score for the TBB is a result of our evaluators being

routed differently through the Tor network and receiving different versions of the website based

on the location of their exit nodes.2

1Smaller sample sizes were used when evaluating TBB because of time constraints, not for funda-
mental methodological reasons.

2We chose to not assign the Tor exit node to a fixed location during this evaluation to accurately
recreate the experience of using the default configuration of the TBB.
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As Table VII shows, the usability of our conservative and aggressive configurations is as good

as or better than other popularly used browser security tools. This suggests that, while our

Web API standards blocking approach has some effect on usability, it is a cost security-sensitive

users would accept.

5.2.3.4 Allowing Features for Trusted Applications

We further evaluated our approach by attempting to use several popular, complex JavaScript

applications in a browser in the aggressive hardened configuration. We then created application-

specific configurations to allow these applications to run, but with access to only the minimal

set of features needed for functionality.

This process of creating site-specific feature configurations is roughly analogous to granting

trusted applications additional capabilities (in the context of a permissions-based system), or

allowing trusted domains to run JavaScript code (similar to how NoScript functions).

We built these application specific configurations using a tool-assisted, trial and error pro-

cess: first, we visited the application with the browser extension in “logging” mode, which

caused the extension to log blocked functionality. Next, when we encountered a part of the web

application that did not function correctly, we reviewed the extension’s log to see what blocked

functionality seemed related to the error. We then iteratively enabled the related blocked stan-

dards and revisited the application to see if enabling the standard allowed the app to function

correctly. We repeated the above steps until the app worked as desired.

This process is would be beyond what typical web users would be capable of, or interested in,

doing. Users who were interested in improving the security of their browser, but not interested
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in creating hardened app configurations themselves, could subscribe to trusted, expert curated

policies, similar to how users of AdBlock Plus receive community created rules from EasyList.

For the first application-specific configuration example, we watched videos on YouTube,

by first searching for videos on the site’s homepage, clicking on a video to watch, watching

the video on its specific page, and then expanding the video’s display to full-screen. This

required enabling three standards that are blocked in our aggressive configuration: the File

API standard1, the Media Source Extensions standard2, and the Fullscreen API standard.

Once we enabled these three standards, we were able to search for and watch videos on the site,

while still having 39 other standards disabled.

Second, we used the Google Drive application to write and save a text document, formatting

the text using the formatting features provided by the website (creating bulleted lists, altering

justifications, changing fonts and text sizes, embedding links, etc.). Doing so required enabling

two standards that are by default blocked in our aggressive configuration: the HTML: Web

Storage standard3 and the UI Events standard4. Allowing Google Docs to access these two

1YouTube uses methods defined in this standard to create URL strings referring to media on the
page.

2YouTube uses the HTMLVideoElement.prototype.getVideoPlaybackQuality method from this
standard to calibrate video quality based on bandwidth.

3Google Drive uses functionality from this standard to track user state between pages.

4Google Drive uses this standard for finer-grained detection of where the mouse cursor is clicking in
the application’s interface.
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additional standards, but leaving the other 40 standards disabled, allowed us to create rich text

documents without any user-noticeable affect in site functionality.

Third and finally, we used the Google Maps application to map a route between Chicago

and New York. We did so by first searching for “Chicago, IL”, allowing the map to zoom in on

the city, clicking the “Directions” button, searching for “New York, NY”, and then selecting

the “driving directions” option. Once we enabled the HTML: Channel Messaging standard1

we were able to use the site as normal.

5.3 Real-World Extension Deployment

The previous section described the design of the Web API blocking extension, and how

that design was based on the cost-benefit measurements from Chapter 4. This section describes

discoveries that were made once the extension was released to the public, and further developed

with the help of other privacy and security focused developers.

5.3.1 Vulnerability in WebExtension Implementations

While working on an issue that was reported against the blocking extension, we discovered

a security-related vulnerability in the WebExtension implementations in Firefox and Chrome.

This vulnerability allows determined websites to access browser functionality blocked by our

extension, and a comprehensive defense against it required modifications to our approach that

breaks more websites than we originally accounted for. This same WebExtension weakness also

1Which Google Maps uses to enable communication between different sub-parts of the application.
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affects other security and privacy improving extensions (e.g. PrivacyBadger, canvas blockers,

the “Shields Up” defenses in the Brave browser).

This section provides some background information on what the WebExtension standard is,

describes the vulnerability in the most popular implementations of the WebExtension standard

we discovered, and how authors of privacy and security enhancing extensions can move forward.

5.3.1.1 The WebExtension Standard

The WebExtension (110) standard defines a way to write browser-modifying extensions that

run on all major, modern browsers. All of the major browser vendors have pledged support for

the standard, but Firefox and Chrome have the most complete and popular implementations.

The standard is largely based on the original Chrome Extension API, and is managed by the

W3C.

The WebExtension standard allows authors to modify the browsing environment in many

ways. Most relevant to our extension is the ability to inject JavaScript into frames, before the

frame’s own JavaScript has executed. This allows the extension to modify the environment

the website executes in. Our extension uses this technique to add access controls to Web API

features, using a method described in greater detail in Section 4.2. Many other privacy and

security enhancing extensions use this same technique to prevent pages from accessing parts of

the Web API, to protect users (e.g. to detect or prevent fingerprinting attempts).

5.3.1.2 How the Vulnerability Works

The vulnerability we discovered allows pages to access unmodified versions of the browser

environment, even after the extension’s JavaScript has run. The vulnerability works by exploit-
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ing how frames interact in Chrome and Firefox, and the timing of when WebExtension’s script

injection hooks execute.

Frames in HTML Documents: The term frame refers to an execution environment in

the browser. Each page loaded by the browser gets a frame, with each browser tab depicting

a single frame. For example, loading example.org in a browser tab will create a single frame,

showing the HTML document returned by example.org. Opening a second tab and loading

other-example.org will likewise create a new frame, this time depicting the document returned

from other-example.org.

Importantly, each frame gets its own DOM instance, each with its own version of each

Web API feature. Each Web API feature is implemented by a JavaScript object, with func-

tions represented by objects inheriting from Function.prototype. Changing a function in

one frame will have no effect on similar objects in other frames. Put differently, deleting the

Document.prototype.getElementById object in the example.org frame will prevent code ex-

ecuting in the example.org frame from querying for elements by their id, but that change will

be invisible to code running in the other-example.org frame.

In general, frames are not able to directly access the resources of other frames. In the

above example, code running in the example.org frame cannot access the DOM of the other-

example.org frame. However, this rule does not hold in all cases. In some cases, a frame can

access the DOM of its child frames (e.g. iframes). When the child frame is rendering content

from the same domain as the parent frame, the parent frame can access the DOM of the child

frame through the child frame’s contentWindow property.
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Injecting Script from a WebExtension: The WebExtension standard provides several

opportunities for extensions to inject JavaScript into frames. Relevant to this vulnerability is

that scripts can register to run at loading time, which corresponds to a point when the DOM

for the frame has been prepared, but no page contents have yet executed. The WebExtension

standard defines this as the document start hook.

Because the WebExtension standard guarantees that document start will run before any

other content is executed in the frame, many extensions use this opportunity to inject script into

a frame, to modify the DOM of the frame to achieve some security or privacy improvement.

Our extension uses this hook to inject JavaScript that interposes on the features of blocked

standards. Since the WebExtension standard guarantees that this will happen before any page

content executes, the extension can be sure that the page will only see the DOM as its been

modified by the extension, and that page code will not be able to access the original, non-

interposed-on versions of the blocked features.

Many other extensions function similarly, and use the document start hook to achieve

security or privacy goals. PrivacyBadger, for example, uses this opportunity to replace Web API

functions associated with canvas fingerprinting with new functions that record the fingerprinting

attempt.

Exploiting the Vulnerability: The vulnerability arises because of how the above two is-

sues (child-frame access and extension code injection timing) interact in common WebExtension

implementations. One might expect that because the document start hook runs before page

content, then page content will only be able to access the DOM after its been modified. How-
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ever, this proves to be incorrect. While frames are unable to access their own DOM before it is

modified by extensions, frames can access the DOM of child frames before the document start

hook fires in the child frame.

This occurs because, while the document start hook is guaranteed to fire before a frame’s

content runs, there is a period of time between when the child frame’s DOM is created, and the

child’s document start hook fires. If a parent frame accesses the child frame’s contentWindow

property during this interim period, the parent frame will be able to access the child frame’s

DOM before it is modified. The parent frame can then extract references to blocked function-

ality and execute them in the context of the parent frame. The end result is that pages can

bypass extensions that attempt to restrict access to Web API features.

5.3.1.3 Addressing the Vulnerability

We addressed this vulnerability in the WebExtension standard in several ways. First, we

filed bugs with both Firefox1 and Chromium2, notifying them of the issue. Firefox has acknowl-

edged the issue but so far the issue has not been addressed. The issue is still waiting for triage

in Chromium’s system.

Second, we notified other similar privacy and security minded projects that use the same

WebExtension approach (i.e. Brave and PrivacyBadger) of the issue. In both cases, the develop-

1https://bugzilla.mozilla.org/show_bug.cgi?id=1424176

2https://bugs.chromium.org/p/chromium/issues/detail?id=793217
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ers acknowledged the issue, but are waiting on action from the browser vendors before pursuing

the matter further, largely because currently available solutions break too many websites.

Third, we modified the extension to give users an option to protect themselves against this

vulnerability, at the cost of breaking some benign sites. Versions of ECMAScript (the technical

name for the standard that defines JavaScript) 5.1 and later define a Object.defineProperty (111)

function, which can be used to prevent code from reading from and writing to properties on

certain types of objects. The extension can use this function to prevent frames from accessing

the content of child frames. This prevents websites from bypassing the extension, with the

downside of breaking sites that benignly access child frames in this way. While this is not a

common technique online (measured by domains that use the technique), some very popular

sites use this technique to coordinate across origins (e.g. Google’s authentication flow).

At a fundamental level, the correct solution is likely to freeze the event loop of the parent

frame until the document start hook of the child frame has fired. This would incur some

performance loss (since the parent frame would momentarily freeze), but the cost would be

small. It is difficult to think of scenarios when frames need to create and insert large numbers

of child frames into documents, particularly in performance-sensitive tasks. However, further

exploring and evaluating solutions to this issue is beyond the scope of this dissertation.

5.3.2 Feature-level Granularity

A second insight gained from making the browser extension public, and improving it with

other privacy and security-minded developers, is that, in some cases, the “standard” may be

the wrong level of analysis when evaluating the Web API. In some cases, users are better served
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by being able to define finer-grained policies, such as blocking a small number of features in a

larger standard. These finer-grained policies allow dedicated users to drive down the number

of sites the extension breaks, while still preventing sites from accessing problematic Web API

features.

For example, many users of the extension were interested in blocking the Canvas standard,

since it is often implicated in fingerprinting attacks. While the functionality in the standard

is rarely needed to deliver the main content on a site, it is sometimes used when rendering

peripheral but pleasant content. Some users wanted to be able to protect themselves against

fingerprinting attacks without giving up some of the flashier parts of the sites they visited.

The solution was to allow users the option to block just some features in a standard, but

leave the rest of the features unmodified. In the Canvas example, the standard includes 53

features, only 4 of which are used for fingerprinting1. By blocking methods that allowed for

reading from a canvas, but allowing the rest of the standard to function as normal, users were

able to better protect themselves against privacy and security violations, while still allowing

trusted sites to provide their user-benefiting functionality.

More broadly, by giving the users the option to block at the feature level, instead of the

standard level, users were able to push the extension’s break rate down without reducing their

security.

1HTMLCanvasElement.prototype.toDataURL, HTMLCanvasElement.prototype.toBlob,
CanvasRenderingContext2D.prototype.isPointInPath and CanvasRenderingContext2D.prototype.isPointInStroke
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5.3.3 Web API Standard Growth

Finally, maintaining the extension has emphasized how quickly the Web API grows, and

the need for security and privacy researchers to consider how quickly the web changes as an ap-

plication platform. Since the research in Chapter 4 was conducted, browsers have implemented

partially or fully implemented Web API standards for interacting with VR headsets (112), in-

teracting with USB devices (113), and synthesizing and recognizing speech (114), among many

others.

Each of these features, while adding potentially useful new capabilities to the platform, also

expands the browser’s attack surface and makes the system more complex. More work like that

described in Chapter 4 will be needed to understand if the benefit of each new powerful feature

is worth the cost.

5.4 Conclusions

This chapter builds on the findings described in Chapters 3 and 4 to build a publicly available

tool that allows web users to restrict which parts of the Web API websites can access. This

chapter also presents evaluations of the usability of the tool under common usage scenarios,

some quantification of the security benefits of using the tool under those scenarios, and some

insights that were only gained when the tool was used by unaffiliated users.

The most significant results of this study, as it relates to this dissertation’s overarching

goal of improving privacy and security on the web, are three insights. First, that restricting

website access to the Web API is a realistic and implementable way of protecting the security

and privacy of users on the web today, and with trade-offs that real world users are willing to
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accept. Second, that with relatively minor changes, browser vendors could allow the security

and privacy benefits of this Web API blocking technique to be enjoyed at even lower cost.

Finally, that standards authors should consider whether all websites need access to new Web

API functionality, or if users would be better served by a restrict-by-default, opt-in-when-needed

model.

This chapter has focused on applying the findings from Chapters 3 and 4 to the web as it

is currently designed. Chapter 6 explores what security and privacy benefits can be achieved

by applying these findings to a deeper redesign of how web applications are designed and

deployed.
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Standard Conservative Aggressive

Beacon X X

DOM Parsing and Serialization X X

Fullscreen API X X

High Resolution Time Level 2 X X

HTML: Web Sockets X X

HTML: Channel Messaging X X

HTML: Web Workers X X

Indexed Database API X X

Performance Timeline Level 2 X X

Resource Timing X X

Scalable Vector Graphics 1.1 X X

UI Events Specification X X

Web Audio API X X

WebGL Specification X X

Ambient Light Sensor API X

Battery Status API X

CSS Conditional Rules Module Level 3 X

CSS Font Loading Module Level 3 X

CSSOM View Module X

DOM Level 2: Traversal and Range X

Encrypted Media Extensions X

execCommand X

Fetch X

File API X

Gamepad X

Geolocation API Specification X

HTML: Broadcasting X

HTML: Plugins X

HTML: History Interface X

HTML: Web Storage X

Media Capture and Streams X

Media Source Extensions X

Navigation Timing X

Performance Timeline X

Pointer Lock X

Proximity Events X

Selection API X

The Screen Orientation API X

Timing control for script-based animations X

URL X

User Timing Level 2 X

W3C DOM4 X

Web Notifications X

WebRTC 1.0 X

WebVTT

Geometry Interfaces

Vibration

WebVR

WebUSB

WebSpeech

TABLE V: LISTING OF WHICH STANDARDS WERE DISABLED IN THE EVALUATED

CONSERVATIVE AND AGGRESSIVE HARDENED BROWSER CONFIGURATIONS.
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Statistic Conservative Aggressive

Standards blocked 15 45

Previous CVEs # 89 123

Previous CVEs % 52.0% 71.9%

LOC Removed # 37,848 53,518

LOC Removed % 50.00% 70.76%

% Popular sites broken 7.14% 15.71%

% Less popular sites broken 3.87% 11.61%

TABLE VI: COST AND BENEFIT STATISTICS FOR THE EVALUATED CONSERVATIVE

AND AGGRESSIVE BROWSER CONFIGURATIONS.

% Popular % Less popular Sites tested

sites broken sites broken

Conservative Profile 7.14% 3.87% 330

Aggressive Profile 15.71% 11.61% 330

Tor Browser Bundle 16.28% 7.50% 100

NoScript 40.86% 43.87% 330

TABLE VII: COMPARISON OF THE USEABILITY OF THE FEATURE-ACCESS-

CONTROL IMPOSING EXTENSION, COMPARED AGAINST VERSUS OTHER POPU-

LAR BROWSER SECURITY TOOLS.



CHAPTER 6

TOWARDS MORE SECURE WEB APPLICATIONS

This chapter includes excerpts and figures from a preprint version of material that was later

published in Proceedings of 2017 ConPro. Snyder, Peter; Watiker, Laura; Taylor, Cynthia;

Kanich, Chris; The dissertation author was the primary investigator and author of this work.

6.1 Introduction

The final step this dissertation makes in improving web privacy and security is to explore

other ways web-like applications could be developed and deployed, in light of the findings

discussed in previous chapters. Chapter 5 presented ways of improving web security and privacy

while maintaining compatibility with existing websites. This chapter considers the further

improvements that could be achieved with a system designed from the start with the findings

from Chapters 3 and 4.

This chapter presents CDF, an alternative method for describing interactive websites. The

design requires site authors to describe sites using a declarative, statically checkable format,

that trades a loss in author-expressiveness for gains in client-enforceable security guarantees.

The design is as a proof of concept, to demonstrate that many kinds of websites users enjoy on

the modern web can be implemented with only a subset of the functionality in the browser, and

in a manner that allows the client to enforce a greater number of protections and guarantees.

98
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The discussed system is intended demonstrate two observations informed by the chapters:

first, that there is a large class of websites that do not need the expressiveness and full feature

set of the existing HTML and JavaScript system, and second, that there are security and privacy

benefits to be had in moving this class of websites to alternative web application systems. We

emphasize that the system described in this chapter is not intended to be adopted as is, or that

it makes strong claims to any specific security and privacy benefits. It is instead intended as a

demonstration that other points on the security-functionality tradeoff curve are possible, and

that the costs (in terms of developer expressiveness) of moving to those other, more secure and

private, points may be less than expected.

The rest of this chapter is organized as follows: Section 6.2 presents the high level design

of the system. Section 6.3 describes an implementation of CDF ’s design that leverages the

engineering and omnipresence of commodity web browsers. Section 6.4 gives an evaluation of

the system’s capabilities and security guarantees, a discussion of the limitations of the current

design, and the types of applications the system could not implement, in its current state.

Section 6.5 discusses this work’s place in the overarching goals of this dissertation.

6.2 Design

CDF is an alternative system for creating modern, interactive websites, that provides greater

security and privacy guarantees than the current HTML-and-JavaScript system. The principal

features in the design of CDF are as follows.

First, CDF prevents websites from running arbitrary JavaScript on the client. Instead, CDF

authors create interactive websites by composing trusted, client-controlled implementations of
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interactive functionality using an easily checked, declarative syntax. Second, CDF only uses a

small subset of browser features, allowing websites to access only the “core”, or most popular

and frequently used parts of the Web API, when creating web sites. Third, CDF places stricter

constraints on the kinds of web documents than current HTML -and-JavaScript applications

enforce to restrict possible data flows through the application.

Table VIII provides a comparison of the capabilities and guarantees made by current HTML-

and-JavaScript based applications, contrasted against CDF documents. The following subsec-

tions detail each aspect of CDF’s design.

6.2.1 Trusted Feature Implementation

CDF’s main method for improving user security and privacy is by preventing websites from

executing arbitrary JavaScript on the client. The current JavaScript-based system for providing

interactive websites is the cause of many web browser security problems. Browsers must trust

that code will carry out some non-malicious purpose when executing it, and that a given set of

JavaScript instructions will benefit the user (by, for example, setting up a website’s user interface

elements), instead of harming the user (e.g. by fingerprinting the user, accessing a browser

feature with a known security flaw, or sending a session token to a malicious destination).

Instead of try to verify that JavaScript code is benign before execution (a difficult-to-

impossible task), CDF takes the simpler approach of not allowing applications to provide their

own JavaScript. CDF instead provides a set of trusted, client-side implemented interactive

primitives, which web authors can compose into higher-level functionality with a declarative,

easy to verify syntax. CDF authors can, for example, tie a mouse click event to a document
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attribute change event, not by writing code directly, but through the structure of the document.

CDF clients include their own trusted libraries that handle generating code and executing the

relevant functionality on the clients, without trusting code provided by the website.

The result is that CDF documents are composed from functionality implemented in trusted,

client-controlled libraries. These libraries are designed to compose safely, and pages can only

access them through a simple, declarative syntax. This is in contrast to the typical JavaScript

based approach, where websites can execute arbitrary code, and web browsers must judge if

the resulting behavior seems safe through heuristics, like XSS filters and code origin reputation

systems.

6.2.2 Feature Selection

CDF also protects user security and privacy by reducing the browser’s attack surface by

preventing websites from accessing browser functionality that is either rarely used, or predom-

inantly used for non-user-serving purposes (e.g. browser fingerprinting).

As demonstrated in Chapters 3 and 4, modern web browsers implement a huge array of

Web API features. While some of this functionality is closely related to the web’s most-frequent

purpose of delivering interactive documents, other functionality is never used, used in only rare

niche situations, or used predominantly for malicious purposes.

CDF uses these findings to improve user security and privacy by restricting websites to only

frequently-used, document-manipulation related Web API features. By preventing websites

from accessing features that are not generally used for user serving interests (either because

those features are primary used for advertising and tracking, or because the features are rarely



102

used at all), CDF brings web browsers into closer alignment with the security principal of least

privilege. The attack surface exposed to websites is dramatically reduced, with minimal impact

to the user experience.

6.2.3 Document Constraints

Current HTML applications include several other design aspects that make them difficult

to secure. To name only a few such examples: HTML and JavaScript applications allow scripts

to be loaded from remote locations from any part of the HTML document, enabling many XSS

attacks. HTML documents can contain complete sub-documents through the use of <iframe>

elements, enabling drive by downloads and related attacks. HTML applications generally in-

clude a “referer” header when requesting remote resources, enabling some forms of user tracking.

CDF improves user security and privacy by tightly-controlling what kinds of resources doc-

uments can fetch, and what information is sent during the fetch request. CDF documents

cannot include arbitrary code (either inline or hosted remotely), include sub-documents, or

send information generated in the client directly to remote domains.

6.3 Implementation

We implemented CDF in two parts, first as a document specification, and second as several

additions to the browser’s trusted base: a parser that converts CDF documents into trusted

HTML and JavaScript, a HTTP proxy that converts CDF documents for use in web browsers,

and a set of trusted JavaScript libraries that run in the browser to implement the interactive

aspects of CDF applications.
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The described system was implemented to allow CDF documents to be run in web browsers

today, with no additions or modifications needed to any recently released browser. The same

design could be implemented by modifying a browser to be able to parse and understand CDF

documents “natively”, though at the cost of a much greater engineering task.

We also adopted CSS as is, to handle the presentation of CDF applications. We did so

to minimize the engineering effort needed to implement the CDF concept, and because of the

relative lack of security issues associated with CSS compared to JavaScript. While privacy

issues have been raised concerning recent CSS features (115), such issues are beyond this scope

of this work, other than to note that similar sub-setting approaches could be implemented in

future-CDF-like systems to address such attacks.

This section gives a high level explanation of one possible implementation of CDF ’s design.

Documentation for creating CDF documents, including type specifications, nesting rules, and

the interactivity primitives included in CDF can be found in an open source implementation

and accompanying documentation1.

6.3.1 Document Format

CDF uses JavaScript Object Notation (JSON) strings to represent documents. CDF docu-

ments are trees of typed objects. Types in CDF fall into one of four categories.

• Elements. The structure and text of the document.

• Events. New input from the network or the user.

1https://github.com/bitslab/cdf.
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• Behaviors. Descriptions of what should happen when an Event has triggered.

• Deltas. Changes to be applied to the document.

Each type defines the configuration it can receive (e.g. the URL that a image object can

refer to), and the types it accepts as children in the tree. For example, text objects can be

children of button objects (to create labels on buttons), but button objects cannot be children

of text objects. Since the types in CDF are all well-defined, they can be strictly checked to

ensure they will have predictable effects when rendered in the client.

Some types accept configuration parameters (e.g. the class names to add to the element

when rendered in HTML, or the local URL to post a form’s information to). These configuration

parameters are also strictly typed, and are checked for safety and correctness before being

rendered in the client.

Types are designed to emphasize predictable information flow and user privacy. For example,

in CDF form elements are only allowed to send information to the origin domain, while in HTML

applications, <form> elements can be configured to send information to any domain.

6.3.2 Trusted Base Additions

We implemented the CDF design through three additions to the current trusted web browser

trusted base. These additions, in tandem, enforce the security and privacy properties discussed

in Section 6.2.

6.3.2.1 Parser

The first addition CDF makes to the browser’s trusted base is a CDF parser. The role of the

CDF parser is to take strings and either identify them as invalid CDF documents, or to render
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an equivalent and safe HTML and JavaScript string that can be rendered in the browser. The

parser also provides debugging information as a convenience to CDF authors.

If the parser is given a valid CDF document, it converts it into a combination of HTML

tags, escaped text, <script> tags referencing JavaScript libraries that are part of the CDF

trusted base, and <script> tags containing parameters to be passed to those trusted libraries.

Invalid documents “fail closed”, and return an error code and no output.

6.3.2.2 HTTP Proxy

The second addition CDF makes to the browser’s trusted base is a HTTP proxy that sits

between the browser and the internet. The proxy passes requests from the browser to the

destination server unchanged. Once the server responds, the proxy examines the response. If

the response appears to be a CDF document, the HTTP proxy extracts the body of the request

and provides it to the parser. If the parser accepts the response as a valid CDF document,

the proxy passes the parser-generated HTML and JavaScript back to the client. If the parser

rejects the server’s response as invalid CDF, the proxy instead passes back an error message to

the client, informing the user that the server provided an invalid document.

6.3.2.3 Client JavaScript Libraries

The third addition to the browser’s trusted base is in a small number of JavaScript libraries

(14) that implement the interactive elements of each page. These libraries handle all the client-

side logic and functionality needed for all of the event, behavior and delta types used in the

system, plus some plumbing code needed to route the parameters extracted by the parser to

the correct library implementations.



106

6.4 Evaluation

We tested the usability and expressiveness of CDF by implementing several popular types of

web applications in the the system. We selected these applications (a blog modeled on https:

//www.vogue.com/, an online-banking site based on https://www.bankofamerica.com/, a

social media site modeled on https://twitter.com/, and a collaborative web application

similar to HotCRP (116)) to represent the range of sites that web users commonly interact

with. In each case we were able to replicate the user-facing functionality of each page.

This section evaluates the security benefits of CDF’s approach for describing interactive

websites. For each issue, we briefly describe a vulnerability common in current web applications,

and then describe how CDF improves the situation.

6.4.1 Cross-Site Scripting

XSS refers to when attackers are able to inject JavaScript code into an HTML document,

so that the code is executed by all site visitors, trusted as if the code came from the site author.

The technique is used for many malicious purposes, including extracting session tokens from

the client or redirecting the user to a domain the attacker controls.

CDF protects the client from XSS attacks. First, and most significantly, it removes the

ability for a document to describe any kind of JavaScript code directly. Instead of arbitrary

code, CDF documents can only describe a composition of trusted, safe types. While a malicious

attacker could possibly corrupt a target server to present visitors a different composition of

types than the application author intended, CDF’s types constrain the functionality that can

be described to only safe activities. CDF does not include, for example, any way to access
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cookie values or redirect the client to another location with JavaScript, common goals of CSS

attacks.

6.4.2 Page Alteration / Defacement

When application authors do not adequately sanitize or validate the inputs users provide

to their site, they risk giving users the ability to deface, or otherwise unexpectedly alter, the

presentation of their website. This can lead to a blurring of the line between a message provided

by the page author (which may be trusted by site visitors) and other web site visitors (which

may be untrusted). This may happen when a naive application author concatenates the user’s

input, represented as a string, into a larger string the author is using for the returned content.

CDF’s type system makes this kind of error more difficult to make. The CDF author must

construct pages as trees of instances of types. The page structure and styling cannot be modified

from within an individual child node in the document tree. In cases where page authors are

taking inputs from users, and anticipate that input to be in the form of an unstructured piece

of text (such as a comment on an article), the page author would do so by setting the user’s

input string as the content of a text element. When CDF then renders the document to send

to visitors of the site, the CDF parser escapes all content in text instances to ensure that

the content cannot change the structure of the page (such as by including JavaScript code or

altering the balance of tags on the page).

While CDF does not make this kind of attack impossible (it is possible to conceive of ways

that a sufficiently naive page author would construct a vulnerable document), it makes the
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attack much more difficult to execute. Instead of becoming relatively easy for page authors to

be affected by this kind of attack, CDF instead makes it difficult and less likely.

6.4.3 Limited Trusted Base

A further source of vulnerability in HTML documents is that they allow attackers to take

advantage of a greatly expanded trusted base, in the form of browser plugins like Java and

Flash, and in the form of infrequently used Web API features. As the frequent rate of browser

updates shows, securing just the browser is an extremely difficult task. Needing to trust the

browser in addition to closed source, third party plugins with long histories of exploitability

makes the problem of securing the web dramatically more difficult.

CDF further reduces the attack surface by removing the ability of CDF documents to include

or refer to plugins. As previously discussed, CDF does not include any way to represent an

<object>, <embed> or <iframe> tag on the page, nor does it have a <script> type that could be

used to include the same client side. Earlier in the web’s evolution, popular features like audio

and video could only be provided by these third party plugins. Now that the web has matured

and all popular browsers support standards for audio and video with hardware-accelerated

playback, the absolute necessity of these extensions is limited. The CDF specification makes

it impossible for CDF page authors to reference or interact with any plugins that might be on

the system.

6.4.4 Client Side Fingerprinting

Web users who have not authenticated or intentionally identified themselves to a website

expect to be semi-anonymous. Once a user discards any identifying tokens they’ve received
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from a website (e.g. deleting their browser cookies), they have a reasonable expectation that

they are no longer known to the site. Such assumptions are even built into the state-less nature

of HTTP, and required the addition of cookies to add state into the web.

Malicious websites violate this assumption through client side fingerprinting, or by including

JavaScript code in their pages to take a large number of quasi-identifying measurements, and

combine them in such a way that site visitors can be uniquely identified. These quasi-identifiers

are not sensitive to users deleting their cookies, modifying their user agent string, or taking

other similar steps, making it difficult for users to regain their privacy.

While not all of these techniques rely on client executed JavaScript code, many do, such

as canvas based fingerprinting (31; 38), identifying the JavaScript engine being used(29) or

font and plugin enumeration (28). CDF prevents these client-side fingerprinting techniques by

removing the ability of page authors to include code that takes the relevant measurements. For

example, there is no way for a CDF author to construct a CDF document that will query the

versions of what plugins are installed on the system, or to use the <canvas> tag to take semi-

uniquely-identifying measures of the visitors browser. By removing the ability of document

authors to include arbitrary JavaScript in their pages, and by making it impossible to create

documents that take the same identifying measures, CDF prevents client-side fingerprinting

and increases the amount of anonymity users can expect.

6.4.5 Predictable Information Flow

A final threat to the privacy and security of web users is that it is difficult, if not impossible,

for the average user to predict what information they are sharing when they visit a website,
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and where that information is being sent. A user may visit a website on a domain they trust—

and not intending to trust any other domains in doing so—only to later learn that the site

(maliciously or unknowingly) notified a third party that they visited the site.

CDF addresses this issue in three ways. First, the most popular and intrusive tracking

systems used today rely, at least in part, on JavaScript run on the client. Inclusion of third

party tracking libraries is inexpressible in CDF, and thus the user automatically gains a great

deal of privacy-preservation.

Second, the CDF parser sets the Content-Security-Policy of all documents to referrer

never though an included <meta> tag element, instructing browsers to not send a referrer

header when requesting remote resources, further protecting the privacy of the user.

Finally, it is extremely difficult for web users to know where their content will be sent when

they interact with a website, whether that interaction is interacting with form element, clicking

on a button, or scrolling through a page. Even inspecting the source HTML of the page being

viewed is no guarantee, since JavaScript could have manipulated where the form values will be

sent. CDF removes these uncertainties by only allowing forms and sub-page requests to send

to the current domain.

Tracking pixels which load from third party domains with unique per-user IDs in their URL

are still usable in CDF. While this allows some level of tracking to persist in CDF, a third

party providing Google Analytics style functionality would need to synchronize the user IDs

with every colluding site, rather than rely on JavaScript, cookies, and “referer” headers to

reconstruct user browsing history.
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6.5 Conclusions

This chapter presents an alternate system to designing and deploying web applications that

emphasizes user privacy and security. The system, titled CDF, achieve these gains in two

primary ways: first by restricting the set of Web API features websites have access to, and

second, but using a statically verifiable, typed document system, instead of the HTML and

arbitrary-JavaScript model used on the web today.

This system builds on several findings discussed earlier in this dissertation: that most of

the Web API is not used by websites on the internet (Chapter 3), that allowing websites to

access this rarely-needed functionality imposes unnecessary risks to users privacy and security

(Chapter 4), and that most of the types of functionality users enjoy online can be provided by

limiting websites to a subset of. “core”, low risk Web API features (Chapters 4 and 5).

While not intended to be used by web developers and users as is, the CDF system presented

in this chapter demonstrates that most of the benefits of modern web applications can be im-

plemented and enjoyed at much lower risk to web users than the current HTML and JavaScript

system entails.
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Capability HTML + JS CDF

Load static media from remote and local domains X X

Load non-client controlled JavaScript X -

Can express common web design idioms X X

Server control over HTTP referer and related privacy settings X -

Client guarantees over HTTP referer and related privacy settings - X

Read sensitive values from cookies, local storage, etc. X -

Sub-page / AJAX requests and updates X X

Allow form submissions and AJAX updates to remote domains X -

HTML5 multimedia (<audio>, <video>) X X

Supports common browser plugins (Flash, Java, Silverlight) X -

Advanced JavaScript tools (WebGL, <canvas>, ASM.js) X -

Client side storage (IndexDB, localStorage, etc) X -

Offline Applications X X

TABLE VIII: FEATURE COMPARISON BETWEEN HTML AND CDF DOCUMENT FOR-

MATS.



CHAPTER 7

CONCLUSION

The modern web is the result of a long series of largely uncoordinated iterative changes,

driven by a combination of lineage1, market competition2, well-intentioned but incorrect efforts

to predict where the web would go3, the inability or refusal of standards committees to work to-

gether for the benefit of system cohesion4, and efforts to push the browser as a near-replacement

for the operating system5, among many other well-intentioned reasons.

Given this chaotic, unplanned, and organic development history, its worth celebrating how

successful and useful the web has been. The web is almost certainly the worlds largest, open

application platform, and despite the many of security and privacy issues the web has suffered

over its history, its worth noting that, in many ways, the web platform has proved to be more

secure than its competitors.

1e.g. the adoption of Hypercard’s event model in the early DOM standards.

2e.g. the approximately 10-day design and implementation cycle allowed for the development of
JavaScript

3e.g. the entire SVG Web API standard, intended to compete with Flash’s vector graphics system,
but which received little traction

4e.g. the choice of the CSS committee to use kebab-case for style properties, v.s. the DOM commit-
tee’s choice to use camel-case names.

5e.g. the large number of Web API standards for interacting with hardware, largely adopted because
of the “Firefox OS” and “Chrome OS” projects
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However, to say the web has been a huge success (for application users and developers alike)

is not to say the system cannot be improved. As this dissertation has hopefully demonstrated,

web users face a large number of unnecessary privacy and security risks.

This dissertation aimed to improve the state of web privacy and security by applying a

cost-benefit analysis to one important part of the browser, the Web API, and seeing how those

findings can be used to make the platform safer for users. Chapter 3 presented a technique

for measuring what parts of the Web API are actually being used on the web, along with the

results of applying that technique to the Alexa 10k. Chapter 4 built on these measurements

to systematically measure the costs and benefits posed by each of the standards in the Web

API, to distinguish highly beneficial functionality from functionality that placed web users at

unnecessary, uncompensated risk.

Chapter 5 considered how these cost-benefit measurements could be used to improve privacy

and security on the web as it exists today, and demonstrated the possibility for improvement

through the development of a publicly available browser extension that enforces access-controls

on the Web API.

Finally, Chapter 6 considered how these cost-benefit measurements could be used in the

development of alternate networked application system, in order to further protect web users,

and demonstrated the feasibility of this approach through CDF, a system for developing and

deploying safer web applications, using commodity web browsers.
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The author hopes that, collectively, the findings and data presented in this dissertation can

play a small part in guiding standards committees, future researchers, and browser vendors in

the development of a safer, more privacy preserving web.
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