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ABSTRACT

Threshold aggregation reporting systems promise a practical,
privacy-preserving solution for developers to learn how their
applications are used “in-the-wild”. Unfortunately, proposed
systems to date prove impractical for wide scale adoption,
suffering from a combination of requiring: i) prohibitive trust
assumptions; ii) high computation costs; or iii) massive user
bases. As a result, adoption of truly-private approaches has
been limited to only a small number of enormous (and enor-
mously costly) projects.

In this work, we improve the state of private data collec-
tion by proposing STAR, a highly efficient, easily deployable
system for providing cryptographically-enforced 𝜅-anonymity
protections on user data collection. The STAR protocol is
easy to implement and cheap to run, all while providing
privacy properties similar to, or exceeding the current state-
of-the-art. Measurements of our open-source implementation
of STAR find that STAR is 1773× quicker, requires 62.4× less
communication, and is 24× cheaper to run than the existing
state-of-the-art.

CCS CONCEPTS

• Security and privacy → Privacy-preserving protocols.
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threshold aggregation; private analytics

1 INTRODUCTION

Application developers often need to learn how their prod-
uct is used, and in which environments their applications
runs. Such information helps developers debug errors, address
security issues, and optimize implementations.

However, collecting such information puts user privacy
at risk. Among other concerns, collecting user data, even
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Figure 1: General STAR architecture. In the Randomness
phase, clients sample randomness from a dedicated server. In
the Message phase, clients generate their messages to send to
the aggregation server. The aggregation server learns those
measurements sent by 𝜅 clients in the Aggregation phase.
Client randomness can be sampled locally, if the measurement
distribution is sufficiently entropic (STARLite, Section 7.1).

de-identified data, may allow a data collector to profile a user
or link records, revealing increasingly rich information about
users over time. Naive data collection can harm user privacy
in ways unintended by the developer and/or unexpected by
the user.

A common approach for protecting user privacy when
collecting client measurement data is to only learn those
measurements that are sent by 𝜅 clients (𝜅-heavy-hitters). In
these systems, the central server only learns the measurement
if there are at least 𝜅 − 1 other clients that provide it as
well. This approach prevents the data collector from learning
uniquely identifying (or uniquely co-occurring patterns of)
values, with the broader goal of preventing the identification
of any individuals in aggregate dataset. Such guarantees are
strongly related to the privacy notion of 𝜅-anonymity [37].
We refer to systems that can provide such guarantees as
threshold aggregation systems.
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Designers of threshold aggregation systems face a challeng-
ing dichotomy though: how to allow a server to determine
if it has collected 𝜅 identical records, without: i) the server
first seeing the underlying value; and ii) in a manner that
protects the user against a malicious (or generally untrusted)
server.

Many systems have been proposed to try and square this
circle [4, 5, 8–10, 12–14, 19, 27, 31, 34, 40]. However, all such
systems to date have properties that make them impractical
for most developers and telemetry systems. More specifi-
cally, all systems to date have at least one of the following
undesirable properties:

• expensive server-side aggregation [9, 27];
• non-collusion assumptions for servers that communi-
cate with each other [8, 10];
• interactive communication between clients [13, 27, 31];
• trusted third parties or hardware [8];
• difficult to apply for cases where 𝜅 > 1 [13, 31];
• require noise injection, and so require large user bases
and/or entail utility loss [4, 5, 12, 19, 34, 40];
• restricted to numeric data types [1, 14];
• unbounded worst case leakage [4, 5, 12, 34, 40].

1.1 The STAR approach

In response to these issues in current threshold aggregation
systems, we propose STAR; a practical, private threshold
aggregation system that prioritizes i) efficiency (so that it
can be deployed at extremely low cost), ii) limited trust as-
sumptions (so that the trust requirements can be achieved by
a wider range projects), and iii) simple, well-established cryp-
tography (so that systems can be implemented and audited
by a wider range of developers).

Further, STAR provides capabilities existing threshold ag-
gregation systems lack, allowing STAR to solve use cases
unaddressed by current state of the art. Specifically, STAR
allows developers to attach arbitrary (but still threshold-
protected) data to client messages.

Overall idea. Figure 1 presents an overview of the STAR
approach. Each client constructs a ciphertext by encrypting
their measurement (and any auxiliary data) using an encryp-
tion key derived deterministically from i) any randomness
present in the client measurement and ii) additional random-
ness provided by a “randomness server”. This randomness
server never learns client values or inputs.

The client then sends: i) the ciphertext; ii) a 𝜅-out-of-𝑁
secret share of the randomness used to derive the encryption
key; and iii) a deterministic tag informing the server which
shares to combine. The aggregation server groups reports
with the same tag, and recovers the encryption keys from
those subsets of size ≥ 𝐾 . Thus, the server learns all the
measurements that are shared by at least 𝜅 clients (along
with any auxiliary data).1

The aforementioned randomness server runs an oblivious
pseudorandom function (OPRF) service that allows clients to

1Note that similar approaches were highlighted previously by Bittau et
al. [8], but various complex issues were left as open problems to solve.

receive pseudorandom function evaluations on their measure-
ment and the server OPRF key, without revealing anything
about their measurement. The clients use the output as ran-
domness to produce the message that is then sent to the
aggregation server. Using this framework allows STAR to
provide strong privacy guarantees for clients, even if the
measurement space has low entropy at the point when the
aggregation takes place. The randomness server must be non-
colluding with respect to the aggregation server, though these
servers never have to communicate directly.

The full STAR protocol is specified in Section 4. We also de-
scribe an alternative form of STAR, “STARLite”, that samples
randomness only from the measurement itself. This approach
is only suitable for sufficiently random data distributions, but
removes the need for a distinct randomness server, further
simplifying and reducing the costs of private data collection.
See Section 7 for more discussion.

Trust assumptions. While STAR protocol is inherently multi-
server, we note that the collaboration model is categorically
weaker than previous cryptographic approaches such as [9,
10, 14], where multiple servers collaboratively compute the
output of the aggregation. In effect, STAR provides the same
trust dynamic as submitting plaintext measurements to an
untrusted server over an anonymizing proxy (which also
provides the randomness server functionality), but with the
extra security guarantee that client measurements are hidden
until 𝜅-anonymity is provided, and with very little additional
performance overhead.

Simple cryptography. STAR uses simple, well-established
cryptographic tools, that have been used extensively by non-
experts for many years. Previous proposals either use trusted
hardware; non-quantifiable noise-based approaches; or novel,
complex, and poorly understood cryptographic tools.

Performance. To confirm the practicality of STAR, we present
and report on an open-source Rust implementation.2 For
processing server-side aggregation of 1, 000, 000 client mea-
surements, STAR requires only 20.01 seconds and a total
of 222.21MB of communication, and computation is minimal.
Overall, STAR is orders of magnitude cheaper to run than
previous systems, see Section 6 for more details.

Standardization. STAR is compatible with the IETF’s pro-
posed framework for devising new privacy-preserving mea-
surement systems [35].

1.2 Formal contributions

We make the following contributions:

• The design, systematization, and formalization of the
STAR system, and associated privacy goals;
• An open-source Rust implementation of STAR, that is
already used in wide-scale software deployments;
• Empirical evaluation of the STAR protocol, that show-
cases performance and simplicity far superior to previ-
ous constructions, while ensuring comparable privacy
guarantees;

2https://github.com/brave-experiments/sta-rs
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• Specific guidance for navigating trade-offs between ad-
ditional privacy, and simpler deployment scenarios.

2 OVERVIEW OF DESIGN GOALS

In this section we clarify the problem statement that we
are tackling, what constraints we are operating under, and
subsequently a set of design goals and non-goals.

2.1 Problem statement

Primary goal. We aim to build a system that allows clients to
submit measurements as encoded messages to an untrusted
aggregation server. This aggregation server should be able
to decode and reveal only those measurements that are sent
by ≥ 𝜅 clients, where 𝜅 is a public parameter chosen by the
aggregation server.

Auxiliary data. Clients should be able to send auxiliary data
with their measurements, that can differ from client-to-client
and is revealed only if the client’s measurement satisfies the
threshold aggregation policy.

2.2 Motivation and constraints

We aim to enable privacy-preserving threshold aggregation
data collection through a protocol that both i) provides strong
privacy guarantees, and ii) is practical for implementation
and adoption by a wide range of projects and organizations;
everything from small hobbyist projects to Web scale software.
We particularly aim for a solution for projects that are not
well served by existing state of the art (which requires non-
trivial budgets, difficult-to-achieve trust assumptions and
implementation expertise). To assess suitability, the following
points and constraints are crucial to bear in mind.

Client privacy. Any protocol should provide formal guar-
antees of client privacy in a well-understood and coherent
security model, with very limited leakage.

Correctness guarantees. Any solution must provide correct
aggregation, rather than approximations that rely on re-
ceiving very large amounts of client data for providing high
utility.

Low financial costs. Small projects usually run servers in
standard cloud-based hardware such as Amazon Web Services
(AWS), so financial costs can run up quickly. Thus, we can
neither tolerate expensive cryptographic computation nor
costly bandwidth consumption.

Achievable trust requirements. Data aggregation procedures
that rely on multi-round interactions with a non-colluding
partner are expensive to set up, run, and maintain.

Avoiding trusted hardware. Running aggregation in trusted
hardware platforms, such as secure enclaves (such as Intel
SGX) or cloud-based solutions (e.g. Amazon Nitro enclaves3),
are usually prohibitively expensive and potentially vulnerable
to attacks [32]. Overall, requiring trusted hardware signifi-
cantly increases the complexity of any candidate system.

3https://aws.amazon.com/ec2/nitro/

Limiting cryptographic complexity. Avoiding novel crypto-
graphic procedures, that are both expensive to run and re-
quire significant cryptographic expertise to implement, allows
those with little cryptographic knowledge to implement ap-
plications safely and decreases the risk of disastrous privacy
vulnerabilities.

2.3 Goals

With the above constraints in mind, we will design a threshold
aggregation system with the following characteristics.

Concrete privacy guarantees. We will aim to provide similar
privacy guarantees to existing threshold aggregation proto-
cols, both in terms of concretely restricting the capabilities
of an adversary to learn measurements that sent by less than
the threshold number of clients, and in reducing any leakage
that occurs. Overall, we will design a system and formal se-
curity model that provides client privacy, up to a concretely
specified amount of limited leakage.

Minimal trust assumptions. We will develop a protocol that,
at the very least, only involves a single aggregation server.
This aggregation server must not require communication with
any non-colluding parties, at least during the aggregation
process. This categorically eases the overhead of building
and maintaining practical deployments, and will significantly
reduce bandwidth consumption.

Cheap running costs. Bandwidth usage must be minimal,
along with any computation that is required. Ideally, we
would like aggregation of 1 million client measurements to
incur a cost of less than 1 dollar.

Simple, trusted cryptography. The cryptographic machinery
that we use must be simple to understand by non-experts, and
provide auditable security guarantees. Thus, we will avoid
using any novel cryptographic primitives, that could lead to
complicated and potentially vulnerable implementations.

2.4 Non-goals

Furthermore, we make clear that we are not attempting to
solve any of the following problems.

Prevention of Sybil attacks. By their very nature, Sybil at-
tacks [18] — where a malicious aggregation server injects
clients into the system that send messages to try and reveal
data from honest clients — are an unavoidable consequence
of building any threshold aggregation system. Therefore, we
will not be attempting to provide security for any client mea-
surements that are targeted by such attacks. We will instead
provide a security model that restricts the time window in
which such attacks can occur (Section 4). Our solution will
also be compatible with any typical higher-layer defenses that
are typically used (such as identity-based certification [18]).

Leakage-free cryptographic design. All threshold aggregation
systems that approach practical performance involve disclos-
ing small amounts of leakage about client measurements that
remain hidden. Combined with external public data, this
leakage may become more useful in identity-linkage attacks.
Rather than preventing leakage entirely, we will instead show
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that the STAR approach provides a leakage profile that is
comparable with recent work in this area (Section 4.6).

3 PRELIMINARIES

We provide the descriptions of each of the cryptographic
primitives that are used for constructing the STAR protocol.

General notation. We use PPT to describe a probabilistic
polynomial time algorithm. We use [𝑛] to represent the set
{1, . . . , 𝑛}. We use 𝑥 ∥𝑦 to denote the concatenation of two

binary strings. We write X c≃ Y for (computationally in-
distinguishable) distributions X and Y iff the advantage of
distinguishing between X and Y for any PPT algorithm is

negligible. We write X s≃ Y if X and Y are (statistically)
indistinguishable for any algorithms (even if they run in
exponential time).

Symmetric encryption. We will assume a symmetric key
encryption scheme, ske, that consists of two algorithms:

• 𝑐 ← Enc(𝑘, 𝑥): produces a ciphertext 𝑐 as the output of
encrypting data 𝑥 with key 𝑘;
• 𝑥 ← Dec(𝑘, 𝑐): outputs 𝑥 as the decryption of 𝑐 under
key 𝑘.

We separately use derive to denote an algorithm that accepts
a seed and a security parameter as input, and returns a
randomly sampled encryption key. We will assume that, for
randomly sampled keys, ske satisfies IND-CPA security.

Secret-sharing. We assume the usage of a 𝜅-out-of-𝑛 thresh-
old secret sharing scheme Π𝜅,𝑛 with information-theoretic
security, operating in a finite field F𝑝 for some prime 𝑝 > 0.
Such a scheme consists of two algorithms:

• 𝑠 ← share(𝑧; 𝑟 ): produces a random share 𝑠 ∈ F𝑝 of the
value 𝑧, with explicitly specified randomness 𝑟 ;
• (𝑧,⊥) ← recover({𝑠𝑖 }𝑖∈[ℓ ] ): outputs 𝑧 when ℓ ≥ 𝜅 and
each 𝑠𝑖 is a valid share of 𝑧, otherwise outputs ⊥.

For security, we require that any set of shares smaller than 𝜅
is indistinguishable from a set of random strings.4 We call
this property share privacy, and is achieved for secret sharing
approaches based on traditional Shamir secret sharing [6].

Remark 1. We require that 𝑝 is large enough that randomly
sampling values from F𝑝 is highly unlikely to lead to collisions.
Note that the size of 𝑝 does not have any bearing on security.

Oblivious pseudorandom function protocols. We assume the
presence of a verifiable oblivious pseudorandom function
(VOPRF) protocol denoted by voprf. Oblivious pseudorandom
function (OPRF) protocols were first introduced by Freedman
et al. [20]. They enable a client to receive PRF evaluations
from a server, whilst the client input is kept secret, and
nothing is revealed about the server PRF key. Verifiable
OPRFs (VOPRFs) such as that of Jarecki et al. [24] provide
clients with the ability to verify (in zero-knowledge) that the
server has evaluated the PRF properly.

Following the description given by Tyagi et al. [39], we
define a VOPRF, voprf, to have the following algorithms:

4As is common for secret sharing schemes, shared messages must be
sufficiently unpredictable [6].

• pp← voprf .setup(1𝜆): a server-side algorithm that pro-
duces public parameters pp for the VOPRF.
• (msk,mpk) ← voprf .keygen(pp): a server-side algorithm
that samples a keypair based that is compatible with
the public parameters pp.
• (rq, st) ← voprf .req(𝑥): a client-side algorithm that pro-
duces a request rq and some state st, from some initial
input 𝑥 ∈ {0, 1}∗;
• rp ← voprf .eval(msk, rq): a server-side algorithm that
produces a response rp using a secret key msk, and a
client request rq;
• 𝑦 ← voprf .finalize(mpk, rp, st): produces the PRF output
on msk and the input 𝑥 encoded in rq, using the server
response rp, public key mpk, and client state st.

We assume a VOPRF protocol that follows the standard
ideal functionality, as laid out by Albrecht et al. [2]. Such
VOPRFs have been shown to exist based on the One-More-
Gap-Diffie-Hellman assumption, with security proven in the
UC-security model [24].

It should be noted that there are numerous practical use-
cases for (V)OPRF protocols and their variations [16, 23, 29,
39], alongside IETF standardization efforts [11, 15].

Min-entropy. For a distribution D over some input space X,
the min-entropy of D is defined as min𝑥 ∈X (− log2 (Pr[𝑋 = 𝑥])).

3.1 Protocol security model

In Section 4.6, we describe an ideal functionality of the thresh-
old aggregation protocol — including inputs, outputs, and
potential leakage — and use it to show that any attack that
is possible in the real world protocol is also possible to launch
against the ideal world functionality. Intuitively, this proves
that the protocol reveals nothing except what is revealed by
the function output plus a bounded amount of leakage that
is output by a specific leakage function.

Protocol security. The ideal functionality is denoted by FP
for protocol P. Let inputsH and inputsA denote the set of
inputs chosen by both honest parties and the adversary A,
respectively. In addition, let Real(P,A; inputsA , inputsH) de-
note the view of the adversary A in the real protocol, and
Ideal(FP ,S,A; inputsA , inputsH) the view of A when simu-
lated by a PPT algorithm S that interacts with FP . We
say that P is secure against malicious adversaries if, for all
choices of inputs, the following equation holds:

Real(P,A; inputsA , inputsH)
c≃ Ideal(FP ,S,A; inputsA , inputsH), (1)

This security model is commonly referred to as proving secu-
rity in the real/ideal-world paradigm.

Leakage. The leakage function specifies additional informa-
tion that the adversary may learn during the protocol that
is required for completing the simulation. This information
mirrors real leakage that occurs during the protocol execution.
We denote by L the leakage function that takes as input a set
of inputs inputs (both honest and adversarial), and outputs
some leakage L(inputs).

4
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4 THE STAR PROTOCOL FRAMEWORK

4.1 Notation

We first recall the main participants, parameters, crypto-
graphic tools, and notation that we use when describing the
STAR protocol.
Participants and protocol parameters:

• 𝜅 is the threshold used for performing aggregation.
• C is the set of all clients {C𝑖 }𝑖∈[𝑛] .
• S is the aggregation server.
• O is the randomness server in P.
• We use P to refer to the STAR protocol, and P̃ to refer
to STARLite (see Figure 2).

General notation:

• D be the distribution over universe U, that clients
sample their measurements from.
• (𝑐𝑖 , aux𝑖 , 𝑡𝑖 ) is the message sent by C𝑖 , as defined in
Figure 2.
• X is the set of all measurements received by S, and let
XH (XA) denote the subsets of measurements received
from honest (adversarial) clients.
• Let E1 = (𝑥1, aux𝑥1 , 𝜅1), . . . , Eℓ = (𝑥ℓ , aux𝑥ℓ , 𝜅ℓ ) corre-
spond to each of the ℓ unique measurements in E,
along with the collection of auxiliary data aux𝑥1 sent
by the clients that send 𝑥1 number of times they are
received by S.
• Y is the set containing each E𝜄 where 𝜅𝜄 ≥ 𝜅 that is
output to S.

Cryptographic tools:

• Γ is a VOPRF (Section 3).
• (msk𝜏 ,mpk𝜏 ) is the keypair of O for Γ.
• Σ is a symmetric encryption scheme satisfying IND-CPA
security (Section 3).
• Π𝜅,𝑛 is a (𝜅, 𝑛)-secret-sharing scheme, and let F𝑝 be the
associated finite field with order 𝑝 ∈ Z (Section 3).
• A is a malicious PPT adversary.
• S is a PPT simulator.
• FP is the ideal functionality corresponding to protocol
P, and L is the leakage function for P (Section 4.6).
• FΓ is the ideal functionality corresponding to Γ.

4.2 Design space

We assume a large universe of elementsM (e.g., bitstrings of
≥ 64 bits) representing potential measurements that clients
send to a single, untrusted aggregation server. For example,
such measurements may include profile information about
a user (e.g. browser user-agent), or the set of applications
installed on a device. Clients may optionally send arbitrary
additional data with their measurement.

A single encoded measurements is sent during an epoch by
each available client. The aggregation server should be able
to reveal all those encoded measurements (and any associated
data) that are received at least 𝜅 times. The threshold 𝜅 ≥ 1
is agreed publicly from the outset.

STAR Randomness phase

C𝑖 (pp, 𝑥𝑖 ,mpk𝜏 ) O(pp,msk𝜏 ,mpk𝜏 )
(rq𝑖 , st𝑖 ) ← Γ.req(𝑥𝑖 )

rq𝑖

rp𝑖 ← Γ.eval(msk𝜏 , rq𝑖 )
rp𝑖

𝑟𝑖 ← Γ.finalize(mpk𝜏 , rp𝑖 , st)
𝑟𝑖,1∥𝑟𝑖,2∥𝑟𝑖,3 ← 𝑟𝑖

DELETE msk𝜏

STAR Message phase

Inputs : 𝑥𝑖 , aux𝑖 , (𝑟𝑖,𝑗 ) 𝑗∈[3] , 𝜅
Outputs : Client STAR message

1 : 𝐾𝑖 ← derive(𝑟𝑖,1)
2 : 𝑠𝑖 ← Π𝜅,𝑛 .share(𝑟𝑖,1; 𝑟𝑖,2)
3 : 𝑐𝑖 ← Σ.Enc(𝐾𝑖 , 𝑥𝑖 ∥aux𝑖 )
4 : 𝑡𝑖 ← 𝑟𝑖,3

5 : return (𝑐𝑖 , 𝑠𝑖 , 𝑡𝑖 )

STAR Aggregation phase

Inputs : 𝑛 Client STAR messages, 𝜅

Outputs : List of measurements that occurred 𝜅 times

1 : Y = [];
2 : foreach E𝜄 = {(𝑐 𝑗 , 𝑠 𝑗 , 𝑡 𝑗 ) | (𝑡 𝑗 = 𝑡𝜄 ∀ 𝑗) } :
3 : if |E𝜄 | < 𝜅 : return ⊥
4 : (𝑐𝜄 , 𝑠𝜄 ) ← {(𝑐𝜄 , 𝑠𝜄 ) | (𝑐𝜄 , 𝑠𝜄 ) ∈ E𝜄 }
5 : 𝑟𝜄,1 ← Π𝜅,𝑛 .recover( ¯𝑠E )
6 : 𝐾𝜄 ← derive(𝑟𝜄,1)
7 : foreach 𝑐 𝑗 ∈ 𝑐𝜄 :
8 : 𝑥𝜄 ∥aux𝑗 ← Σ.Dec(𝐾𝜄 , 𝑐 𝑗 )
9 : if (𝜄 ≠ 0) ∧ (𝑥𝜄 ≠ 𝑥𝜄−1) :

10 : return ⊥
11 : Y[𝑥𝜄 ] .push(aux𝑗 )
12 : return Y

Figure 2: The STAR protocol for performing threshold ag-
gregation of measurements. In the Randomness phase clients
sample VOPRF randomness from O (in STARLite, random-
ness is derived locally by computing 𝑟𝑖,1∥𝑟𝑖,2∥𝑟𝑖,3 ← 𝐻 (pp, 𝑥𝑖 , 𝜏)
for some hash function 𝐻). The Message phase sees clients
construct an encoded message corresponding to their measure-
ment. In the Aggregation phase, S learn those measurements
(and associated data) that are sent by ≥ 𝜅 clients.

4.3 STAR protocol

The STAR protocol is based upon the principle that clients
sharing a measurement can devise compatible secret shares
for a (𝜅, 𝑛)-secret-sharing scheme. Such shares could then be
combined to reveal the measurement itself (and optionally any

5
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additional data that they send) by an untrusted aggregation
server. Once 𝜅 clients send a share of the same value, the
server will be able to recover the hidden value (and any
additional data that is sent).

The algorithmic description of the STAR protocol is given
in Figure 2. We provide a description below as an overview
of the entire exchange.

Randomness phase. Firstly, each client holding measurement
𝑥𝑖 interacts with the randomness server, that runs a VOPRF
service. Essentially, the client operates as the client in the
VOPRF protocol with input 𝑥𝑖 , and the randomness server
answers the query and returns the result to the client. The
client, after processing the VOPRF output to receive 𝑟𝑖 , now
has the result (𝑥𝑖 , 𝑟𝑖 ). Note that any client that shares the
measurement 𝑥𝑖 will also receive the same output 𝑟𝑖 . See
Section 3 for a description of the VOPRF exchange.

It is possible to construct a version of STAR that provides
weaker security guarantees, in favor of dropping the require-
ment for the randomness server (which can leads to a much
simpler pratical deployment). In particular in STARLite, the
client simply samples 𝑟𝑖 directly from their measurement
(for example 𝑟𝑖 ← 𝐻 (𝑥𝑖 ), where 𝐻 is a random-oracle model
hash function) before proceeding directly to the message
phase. The STARLite protocol only retains security when
client measurements are sampled from a suitable high-entropy
distribution, see Section 7 for more discussion.

Message phase. The message construction phase consists of
the following steps.

• The client with (𝑥𝑖 , 𝑟𝑖 ) parses 𝑟𝑖 into three parts
𝑟𝑖,1, 𝑟𝑖,2, 𝑟𝑖,3.5

• They derive a symmetric key 𝐾𝑖 using a pseudorandom
generator where 𝑟𝑖,1 is used as the seed.
• They construct a share 𝑠𝑖 of 𝑟𝑖,1 using a 𝜅-threshold
secret-sharing scheme, using 𝑟𝑖,2 as the local random-
ness that is used in share generation process.
• They construct the ciphertext 𝑐𝑖 as the encryption of
their measurement 𝑥𝑖 , and any auxiliary data that they
would like to attach, using a symmetric encryption
scheme with the previously-derived key 𝐾𝑖 .
• Finally, they construct their message as (𝑐𝑖 , 𝑠𝑖 , 𝑡𝑖 ), where
𝑡𝑖 = 𝑟𝑖,3.

Aggregation phase. In the final aggregation phase the aggre-
gation server receives a message from each of 𝑛 clients, and
learns which of the encoded measurements are shared by at
least 𝜅 clients. The steps are as follows.

• The aggregation server groups together messages based
on whether they share the same 𝑡𝜄 value into subsets
E𝜄 .
• For any subset that contains at least 𝜅 messages, the
aggregation server does the following:
– runs the share recovery algorithm on each of the
share values 𝑠 𝑗 to output 𝑟𝜄,1;

– derives the encryption key 𝐾𝜄 from 𝑟𝜄,1;

5This can be done for example by running 𝑟𝑖,𝑗 = 𝐻 (𝑟𝑖 ∥ 𝑗), for a random-

oracle model hash function 𝐻 .

– decrypts each of the client ciphertexts 𝑐 𝑗 using 𝐾𝜄 ,
and groups together the measurement 𝑥𝜄 with the
list of the auxiliary data objects, aux𝑗 , sent by each
client.

• Finally, the aggregation server creates a list Y of all
measurements 𝑥𝜄 (along with the attached auxiliary
data), that satisfy the threshold 𝜅.

4.4 Security Considerations

We detail a series of considerations related to the security of
the STAR protocol design. The formal security model that
we will use for proving security is given in Section 4.6, and
the proofs are given in Appendix A.

Communication between servers. Note that the randomness
and aggregation servers only communicate with the clients in
the system, and only one performs the eventual aggregation.
This is a significant improvement on existing multi-server
solutions for threshold aggregation, where the servers are
required to communicate with each other for processing the
results of aggregation. Requiring communication between
servers quickly drives up costs for both server operators, and
tangibly weakens the extent to which both servers are non-
colluding. This is because the server operators will have to
work together to ensure that their servers can cooperate.

Randomness server key rotations. The usage of the random-
ness server in STAR ensures that an adversarial aggregation
server must communicate with the randomness server to
launch attacks on client inputs, but it does not immediately
provide security to low-entropy inputs. Therefore, we consider
a security model where clients sample randomness in epoch
𝜏 , and send their encoded measurement in epoch 𝜏 + 1, after
the randomness server has performed a key rotation. This
limits the aggregation server to only launch online attacks
on client inputs before epoch 𝜏 + 1, having not yet seen any
client messages, or observed any leakage. Once this key is
deleted, it is not possible to launch queries that attempt to
identify hidden client values. Moreover, by rotating this key
before the aggregation phase takes place, this ensures that
the S is only able to make use of any leakage that may occur
before they witness any client measurements.

In the formal security model defined in Section 4.6, we
encode this by forcing the adversary S to specify up front
which values they would like to leak. Importantly, this disables
the potential for an adversary to launch a targeted attack
based on client identity, or any observed leakage.

Leakage. The leakage in the STAR protocol amounts to the
aggregation server learning which clients share the same mea-
surement — regardless of whether the measurement is kept
hidden or not. Similarly, the adversary could launch a “Sybil”
attack by establishing/corrupting clients with specifically-
chosen measurements. As mentioned in Section 2.4, we con-
sider prevention of Sybil attacks a non-goal, since all such
threshold aggregation protocols are vulnerable to such at-
tacks. However, we encode the possibility for an adversarial
S to make use of this leakage into the formal leakage function
that is defined as part of our security model in Section 4.6.
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Predictable input distributions. Practical use-cases of STAR
require that client messages remain somewhat unpredictable
during the randomness phase of the protocol. If measure-
ments are predictable, then the aggregation server may launch
queries the randomness server for all such values during this
phase, and then use the leakage to learn which clients are
sending predictable values, even if less than 𝜅 clients send
them. The advantage of STAR (as opposed to STARLite) is
that this attack can only be carried out during the time-
limited randomness phase (before the key rotation occurs),
and that the attack must be carried out online. This allows
extra external protection measures at the randomness server,
such as identity-based rate-limiting and verification, to be
used to make such attacks even more expensive.

Additional data. Before the protocol begins, S should inform
clients of the maximum length of the additional data that
should be sent. If aux𝑖 is not equal to that length, then it
must be truncated or padded depending on whether it is too
long or short, respectively. We make no guarantees on the
shape of auxiliary data for client measurements.

Hardening against local attacks in STAR. All hash function
invocations in STAR can be replaced with functions that
are deliberately slower primitives, such as PBKDF2 [25] and
scrypt [33]. Such functions are used in applications handling
passwords that hope to provide additional security against
password-cracking adversaries. This change only impacts
client computation in a small way, and would increase the dif-
ficulty for any adversarial aggregation server trying to reverse
client encoded measurements. Moreover, such changes simi-
larly increase the difficulty of attacks in case of a breakdown
in the trust model used in STAR, or if using STARLite.

4.5 Reducing Leakage Via Oblivious Proxies

Identity leakage. As with many previous designs of threshold
aggregation protocols, STAR produces a quantifiable amount
of leakage. Importantly, the link between client identity and
their input is unbroken.

In some applications maintaining this link is useful. Con-
sider an aggregation server that is attempting to learn which
clients may be part of a fraudulent botnet of a threshold size,
by having clients submit information about their browser
profile. In such cases, it is essential to link client identity
to their sent messages, so that the aggregation server can
subsequently disqualify malicious clients.

However, if an aggregation server is merely trying to learn
client diagnostic information, it is unlikely that maintaining
this link is useful or necessary.

Oblivious proxies. One method for eliminating such leakage in
STAR is using tools for performing anonymous value submis-
sion at the application-layer — destroying the link between
client identity and their messages. For example, by submit-
ting measurements via an oblivious/anonymizing proxy that
strips client identifying information (such as IP addresses)
from HTTP requests containing client measurements, the
aggregation server learns nothing about the client identity
(Figure 3). Well-known tools exist for this purpose such as

Oblivious proxy

C S
measurement

client_id

measurement

Figure 3: Oblivious proxy for submitting client (C) measure-
ments to the aggregation server (S).

HTTPS

HPKE

HTTPS

C O S

measurement

client_id

measurement

Figure 4: Oblivious HTTP flow including usage of hybrid pub-
lic key encryption (HPKE) for message encapsulation. Here,
O is the proxy resource [38]. This entity can be implemented
in STAR using the randomness server O, since the client mes-
sages are protected with TLS.

Tor6 (or certain VPNs) can be used. However, using Tor
comes with well-known performance overheads that would
slow down client requests in STAR considerably [36].

Oblivious HTTP. An alternative mechanism known as Obliv-
ious HTTP (OHTTP) that has been proposed as a draft
standard to the IETF [38] performs similar anonymization of
HTTP requests as Tor, but with fewer intermediate hops —
promising a smaller performance overhead. The oblivious
proxy is a single party known as the proxy resource, and the
aggregation server plays the part of a target resource that
receives the client message [38].

Figure 4 provides a diagrammatic representation of the
OHTTP flow in the context of STAR. In essence, the client
encapsulates a HTTP request containing their message to
the aggregation server using hybrid public key encryption
(HPKE) [3], where encapsulation is performed under the
public key of the oblivious proxy. The client sends this encap-
sulated message as the body of a separate HTTP request to
the oblivious proxy. The proxy decapsulates the message and
forwards it on to the aggregation server, without including
any client identifying information.

Since client messages to the aggregation server are pro-
tected by TLS the oblivious proxy has no way of reading
the client messages. As a result, this oblivious proxy can be
instantiated using the existing randomness server O in STAR
without compromising any of the security goals, and without
requiring any additional non-colluding parties. Note that this
means that the randomness server must explicitly send a
message to the aggregation server, whereas the original STAR

6https://www.torproject.org/
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protocol requires no communication between these two enti-
ties. This communication is minimal and not related at all to
the cryptographic logic that is run in the aggregation server.
Even so, operators that prefer to avoid any communication
taking place between these servers can simply submit data
over existing anonymizing proxies like Tor, or would require
the oblivious proxy to be run by a different party.

The Oblivious HTTP Internet standards draft defines spe-
cific guarantees that must be upheld by the anonymizing
proxy, as well as request formats [38, Appendix A]. Such
proxies are already intended to be standardized by the IETF,
and to be run by independent entities7 for privacy-preserving
measurement aggregation systems [35].

4.6 Formal Security Model

We now provide the security model for the establishing the
security of STAR. See Appendix A for proofs of security for
the STAR protocol, with respect to the following model.

Ideal functionality. The ideal functionality below represents
the inputs, outputs, and internal steps of the threshold ag-
gregation functionality. We will write FP to denote this func-
tionality, where P is the STAR protocol.

• Participants: aggregation server S, randomness server
O, clients {C𝑖 }𝑖∈[𝑛] .
• Public parameters: upper bound on 𝑛.
• Functionality:
– O inputs the VOPRF keypair (msk𝜏 ,mpk𝜏 ).
– Each client C𝑖 (𝑖 ∈ [𝑛]) provides their input (𝑥𝑖 , aux𝑖 ).
– Let E𝜄 =

{
(𝑥𝜄 , {aux𝑗 } 𝑗 ∈𝐽 , 𝜅𝜄 ) : (𝐽 ⊆ [𝑛]) ∧ (𝑥 𝑗 = 𝑥𝜄 )

}
for each unique 𝑥𝜄 received, where 𝜅𝜄 = |{aux𝑗 }| is the
number of client measurements collected in E𝜄 .

– Let Y be an empty map.
– For each E𝜄 where 𝜅𝜄 ≥ 𝜅, set Y[𝑥𝜄 ] = E𝜄 .
– Output Y to S, output {FΓ (msk𝜏 , 𝑥𝑖 )}𝑖∈[𝑛] to O
(where FΓ is the ideal functionality defined for Γ),
and output ⊥ to each C𝑖 .

Overall, this ideal functionality captures the fact that the
aggregation server learns all client measurements that are
sent by at least 𝜅 clients. The randomness server learns what
it would normally learn during the VOPRF exchange, and
each client learns nothing.8

Leakage function. We use the leakage function (L) defined
below to account for additional protocol leakage that occurs
while running STAR. Assume that the aggregation server
S, and some subset T ⊂ C of all clients is controlled by an
adversary A. The view of A can be simulated using the
following leakage function.

• ReceiveW ←A, a set of disqualified clients specified
by A.
• Receive XA ← A, a set of input measurements specified
by A
• Let Q = C \W be the set of remaining honest clients.

7IETF OHAI: https://datatracker.ietf.org/group/ohai/about/
8For STARLite (denoted by P̃) we may define an alternative function-
ality, that takes no input from the randomness server.

• Receive (𝑥𝑖 , aux𝑖 ) from each C𝑖 ∈ C.
• Partition the set {(𝑥𝑖 , aux𝑖 )}𝑖∈[ |Q |]∪XA into N1, . . . ,Nℓ ,
where N𝜄 is the set of all pairs that share the same
measurement 𝑥𝜄 (for ℓ unique measurements).
• Leak |N𝜄 | to A, for each 𝜄 ∈ [ℓ].

We write L(XH), where XH is the set of all measurements
received from honest clients, to denote the output of L on
XH . Overall, this leakage function captures the fact that an
adversary that controls S learns the cardinality of clients that
share each unique measurement that is received.

Note that the leakage function explicitly does not capture
the notion of client identity, since we assume that client mea-
surements are submitted anonymously. This can be achieved
using various practical solutions (Section 4.5).9

Security proofs. All correctness and security proofs are de-
scribed in Appendix A.

5 FUNCTIONALITY AND LEAKAGE
COMPARISON

5.1 Ideal functionality

A coarse-grained comparison of the functionality provided
in STAR with previous approaches is given in Figure 5. All
performance costs are asymptotic, see Section 6 for the con-
crete costs of running STAR. Overall, the solutions that offer
the closest functionality, while still retaining close to prac-
tical performance, are the private heavy hitters protocols
of [4, 5, 10, 12, 34, 40]. Protocols based on MPC involve
very complex cryptographic implementations and expensive
overheads [17]. Protocols that utilize trusted proxies and hard-
ware require clients to place trust in computing platforms
and entities that are not immune to security failures [32].

5.2 Leakage

An ideal solution to the threshold aggregation problem would
provide information that can be derived from the output
of the ideal functionality alone. In other words, only those
measurements that are received from 𝜅 clients. While some
schemes are able to achieve this notion [8, 9, 14, 27], they
typically fall short of providing practical solutions.

Recent approaches for efficiently learning 𝜅-heavy-hitters [4,
5, 10, 12, 34, 40] incorporate some amount of leakage, that
provides additional information to the adversary. Specif-
ically, each scheme leaks all the 𝜅-heavy-hitting prefixes
of the eventual 𝜅-heavy-hitter measurements. As an ex-
ample, consider clients that sent a measurement corre-
sponding to their birth country. Assume that 𝜅 = 4, and
that five clients send "United States of America", four
send "United Kingdom", and three send "United Arab Emi-

rates". Then the ideal functionality suggests that the aggre-
gation server should only learn that five clients sent "United
States of America", and four sent "United Kingdom". How-
ever, additional leakage informs the server that twelve clients
sent the prefix "United". While such leakage may not always

9The leakage function could also be trivially updated to capture this
additional leakage, if anonymous submission is not possible.
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Protocol Single-round
interaction
with clients

Bandwidth Client
computation

Aggregation
computation

Single-server
aggregation

Associated
data

Negligible
correctness

errors

Fail-safety

Proxy-based shuffling [8, 13, 31] ✓ 𝑂 (𝑛) 𝑂 (1) 𝑂 (𝑛) ✗ ✓ ✓ ✗

Kissner et al. [27] ✗ 𝑂 (𝑚𝑛𝜆) 𝑂 (𝑛2) 𝑂 (𝑚𝑛𝜆) ✓ ✗ ✓ ✗

Blanton et al. [9] ✓ 𝑂 (𝑚𝑛𝜆) 𝑂 (𝑛2) 𝑂 (𝑚𝑛2𝜆) ✗ ✗ ✓ ✗

Randomized response [4, 5, 12, 34, 40] ✗ 𝑂 (𝑛𝜆) 𝑂 (1) 𝑂 (𝑛) ✓ ✗ ✗ ✓

Boneh et al. [10] ✓ 𝑂 (𝑚𝑛𝜆) 𝑂 (𝜆) 𝑂 (𝑚𝑛𝜆𝜅) ✗ ✗ ✓ ✗

STAR (Section 4) ✓ 𝑂 (𝑛𝜆) 𝑂 (𝜆) 𝑂 (𝑛𝜆𝜅2) ✓ ✓ ✓ ✓

Figure 5: Coarse-grained comparison of STAR against previous work. We use 𝜆 to denote the security parameter, 𝑛 = |C| to
denote the number of clients, and 𝑚 to denote the number of servers that are used in multi-server settings. Note that we ignore
generic MPC techniques for computing threshold aggregation due to well-established performance limitations [17]. We also do
not include Prio-like protocols [1, 14] as they are not compatible with string-based data.

be useful, in this example this effectively leaks how many
clients also sent the answer "United Arab Emirates" (since
no other country begins with the "United" prefix).

While STAR avoids prefix-based leakage, it leaks the sub-
sets of clients that share equivalent measurements. In other
words, the server can separate client messages into groups
that all share the same measurement. This can be especially
damaging in situations where the adversary launches a “Sybil”
attack and injects their own measurements to try and learn
how many times the same measurement is submitted. As
mentioned previously, “Sybil” attacks are ultimately possi-
ble against any threshold aggregation scheme (even those
that do not permit any leakage), and so this is not unique
to STAR. Separately, such leakage could allow for measure-
ment inference-based attacks that utilize the counts of each
received message to attempt to infer encoded measurements.

Finally, it should be noted that the single-server aggre-
gation mechanisms of STAR and those based on random-
ized response [4, 5, 12, 34, 40] naturally allow linking client
messages to revealed measurements. Such leakage can be
eliminated using anonymizing proxies for submitting client
messages (Section 4.5). This approach has already been rec-
ommended for submitting measurements as part of ongoing
standardization work in this area [35].

6 PERFORMANCE EVALUATION

We provide an open-source Rust implementation of all the
necessary components for establishing the performance of
STAR.10 We benchmark the runtimes for both constructing
client messages, and running the server aggregation process.
We estimate the overall bandwidth costs as a result of client’s
interacting with both the aggregation and randomness servers.
Finally, we provide runtimes and communication costs for
performing anonymization of STAR messages via the Obliv-
ious HTTP framework [38]. Overall, STAR is exceptionally
efficient, even when processing 1 million measurements, and
orders of magnitude cheaper than competing approaches.

10https://github.com/brave-experiments/sta-rs

6.1 Implementation Details

Secret-sharing implementation. Our secret sharing implemen-
tation is based on the Adept Secret Sharing (ADSS) frame-
work developed by Bellare et al. [6] for achieving stronger
guarantees on privacy and authenticity of shares.

As noted previously, we require implementation of a prime-
order finite field for secret sharing that is large enough to
make the occurrence of collisions a low probability event
to ensure correctness. We choose two prime-order fields —
one with a modulus of 255 bits in length (F255), and one
that is 129-bits (F129) — and provide performance for both.
In a practical sense, we consider the change of collisions in
either field to be negligible. We assume that all inputs that
are shared are 16 bytes in length (randomness for deriving
symmetric encryption keys), so that they can be stored in a
single share polynomial for either choice of finite field.

Finally, we note that secret share recovery uses only a
subset of of 𝜅 shares. This means that we do not check
whether all client shares are well-formed, but we do perform
checks on the decrypted result for all of them. For example, if
we receive 200 shares for a given measurement, with 𝜅 = 100,
we will only perform recovery using a subset of 100 shares.

Oblivious HTTP proxy. We use an open-source Rust imple-
mentation for constructing an Oblivious HTTP proxy11 that
is compliant with the most recent IETF standards draft [38],
as described in Section 4.5. Our setup assumes that client
messages are sent via a proxy resource, run by O, to a target
resource, run by S [38]. Note that sending such messages via
O is compatible with our approach since such messages are
encrypted over a TLS connection that is negotiated with
S. This ensures that we do not introduce any additional
trust assumptions to the STAR protocol. Encapsulation and
decapsulation are performed using HPKE, with ciphersuite
DHKEM(X25519,HKDF-SHA256) [3].

Other cryptographic machinery. We implement the VOPRF
construction detailed by Tyagi et al. [39], with 128 bit se-
curity. The VOPRF is implemented using the ristretto255
prime-order group abstraction.12 All hash functions are im-
plemented using SHA-256. All symmetric encryption is im-
plemented using AES-GCM AEAD with 128-bit keys.

11https://github.com/martinthomson/ohttp
12https://github.com/dalek-cryptography/curve25519-dalek

9

https://github.com/brave-experiments/sta-rs
https://github.com/martinthomson/ohttp
https://github.com/dalek-cryptography/curve25519-dalek


ACM CCS 2022, November 7–11 2022, Los Angeles, USA A. Davidson, P. Snyder, E. B. Quirk, J. Genereux, B. Livshits, H. Haddadi

Figure 6: Left: Communication with the randomness server
during the randomness sampling phase of STAR.
Right: Communication during the STAR aggregation phase.
Performance is compared for the two fields {F129, F255} used
in secret sharing, depending on whether OHTTP is utilized,
and depending on how much auxiliary data is sent (either 0
or 256 bytes) with each measurement.

Client measurement sampling. All client inputs are sampled
as 256-bit strings from a Zipf power-law distribution with a
support of 𝑁 = 10, 000 and parameter 𝑠 = 1.03. This matches
the experimental choices made in [10], and captures a large
proportion of applications. This distribution occurs naturally
in many network-based settings [28] and, as highlighted in [10],
the chosen parameters are chosen conservatively in that the
distribution is closer to uniform than would typically be
expected. In addition, we measure the costs of STAR in the
two cases where clients append either zero or 256 bytes of
auxiliary data to the measurement that they send.

Benchmarking. All benchmarks are run using an AWS EC2
c4.8xlarge instance with 36 vCPUs (3.0 GHz Intel Scalable
Processor) and 60 GiB of memory.

6.2 Communication Costs

Randomness server. In STAR, the client must request ran-
domness from the randomness server, which amounts to
requesting a VOPRF evaluation on their measurement. We
assume that the epochs are known apriori by both client and
server, and that there are seven in total (allowing a daily
epoch rotation and weekly full key rotation). This means that
the client must download eight compressed curve points for
the server public key at the start of the key cycle, and thus
amortizes this cost to (8/7) ·compressed_ec_point_len bytes
per epoch. The size of a client request is a single compressed
elliptic curve point, and the response is a single curve point,
plus two field scalars for the DLEQ proof. The total amortized
per-client communication costs are given in Figure 6.

Aggregation server. The raw communication costs between
clients and the aggregation server consist of a single encrypted
ciphertext, a secret share, and a 32-byte tag. The size of the
share is dependent on the size of the field that is used. The
size of the ciphertext is dependent on the size of the auxiliary
data that is appended to the client measurement. If client
measurements are sent via the OHTTP proxy, then there are

VOPRF
setup

VOPRF
evaluation

Proof
generation

0.547 0.662 0.166

Figure 7: Randomness server single-threaded runtimes (ms).

VOPRF
blind

VOPRF
final

VOPRF
verification

Aggregation
message

F129 F255

0.081 0.093 0.301 0.019 0.02

Figure 8: Client runtimes (ms) during the STAR protocol.

two HTTP requests: one containing an encapsulated HTTP
request to the proxy resource and another corresponding
to the decapsulated request to the aggregation server. We
provide per-client communication costs in Figure 6. Note that
for constructing OHTTP requests, we use an encapsulated
HTTP request containing the following information:

• HTTP status line: e.g. GET /hello.txt HTTP/1.1;
• User-Agent, Host, and Accept-Language HTTP head-
ers with default values given for each;
• X-STAR-Message header containing base64 encoded
STAR protocol message (Section 4).

6.3 Computational Costs

Client message construction. In Figure 8, we summarize the
various costs of the cryptographic operations required for
each individual client in STAR. Clearly client-side operations
are highly performant. The most expensive client operations
are the computation of two exponentiations in the elliptic
curve group that is used. Therefore, we can reasonably expect
that the STAR protocol can be leveraged even for clients with
severely limited computation boundaries. The runtimes of
the randomness server in STAR are given in Figure 7.

Aggregation server. Figure 9 considers the cost of the entire
server aggregation phase for up to 1,000,000 clients, with
𝜅 taken from {0.01%, 0.1%, 1%} of this number. For 1,000,000
clients with 𝜅 = 0.1%, the runtime of the aggregation server
is only 20.01𝑠 using F129, and 73.65𝑠 for F255. Generally, when
reducing the underlying field size (F129) we see runtimes
reduce by a factor of around 3×. This clearly indicates that
the STAR protocol is suitable for processing aggregations
on very regular (sub-daily) reporting schedules. Note that
the absolute size of the threshold has a noticeable impact
on the runtime performance, due to the quadratic overhead
of running Lagrange interpolation. This leads to quadratic
growth of runtimes with respect to the threshold.

Oblivious HTTP proxy. Finally, we provide benchmarks in
Figure 10 for running HPKE encapsulation and decapsulation
of client messages by the OHTTP proxy. The OHTTP proxy
is only required for reducing client identity leakage.
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Figure 9: Aggregation server computation runtimes (seconds) based on number of clients. Graphs from left-to-right corresponding
to a threshold 𝜅 ∈ {0.01%, 0.1%, 1%} of total number of client inputs. Performance is compared for both fields {F129, F255}.

Client setup Server setup Encapsulate Decapsulate

0.131 0.106 0.002 0.002

Figure 10: Runtimes (ms) for performing single-threaded
HPKE setup, encapsulation, and decapsulation at the OHTTP
proxy, using the DHKEM(X25519, HKDF-SHA256) ciphersuite.

6.4 Comparison With Prior Approaches

We compare STAR directly with the performance results of
the work of Boneh et al. [10], that devises a private heavy-
hitters protocols from distributed point functions. As shown
in Figure 5 and mentioned previously, alternative approaches
(such as those based on randomised response, MPC, and
shuffling) do not provide satisfactory performance or func-
tionality.

To ensure that the leakage profile is similar in both STAR
and [10], we compare STAR performance whilst including
overheads for running the OHTTP proxy. From a functional-
ity perspective, the protocol of [10] does not allow clients to
specify auxiliary associated data, and thus is not as expressive
as the STAR protocol. For this reason we only consider com-
munication costs when auxiliary data is not sent. Moreover,
STAR requires only a single aggregation server, while their
aggregation phase requires two server instances. Finally, the
client input distribution parameters are identical.

Communication. STAR (using F129) requires: 133 bytes of
public key data to be downloaded by the client from the
randomness server; 32 bytes to be sent by the client to the
randomness server; 983 bytes to be sent from the client to the
aggregation server (via the OHTTP proxy), of which only
464 bytes is received by the aggregate server, and 519 bytes is
received by the OHTTP proxy. This gives a total 1148 bytes
per client. The protocol of [10] requires approximately 70𝐾𝐵 of
communication per client. Therefore, overall communication
in STAR is 62.4× smaller than in [10]. Using F255 instead, per-
client communication in STAR only increases by 20 bytes.

Runtimes. STAR vastly improves on the runtimes of [10] —
using F129 as the base secret sharing field, and 𝜅 = 0.1% (the
same value used by [10]) of 100, 000 clients, STAR performs

server-side aggregation in 0.467 seconds (and 1.03 seconds us-
ing F255). Moreover, times scale reasonably: for 500, 000 clients,
STAR performs server-side aggregation in 6.06𝑠; for 1 million
clients, it takes 20𝑠.13 In contrast, the [10] protocol takes
828.1𝑠 to perform an aggregation of data from 100, 000 clients,
and 54 minutes for 400, 000 clients. Thus, the aggregation
phase is 1773× faster in the STAR protocol.

Clients messages take 0.628𝑚𝑠 to construct, including inter-
actions with the randomness server and HPKE encapsulation.
The randomness server operations take 0.828𝑚𝑠 per client in-
put; setup costs occur once and can thus be amortized across
all client messages. The cost of running the HPKE proxy
is 0.002𝑚𝑠 per client input. These times can be distributed
across the epoch, and requests can be answered in parallel.

Financial costs. Finally, taking the costs of running an AWS
EC2 c4.8xlarge at the time of writing, it costs $1.591 per
hour of runtime, plus $0.09 per GB of data transferred out,
and $0.02 per GB of data transferred in.14 We summarize the
monetary costs for both protocols in Figure 11. Communica-
tion costs are calculated by considering all data transferred in
and out of EC2 instances, and computation costs by consider-
ing computation per hour.15 The total costs of running all the
components in STAR are $0.00409+$0.037+$0.0053 = $0.04639,
which is more than 24× cheaper than the cost of running
the Boneh et al. [10] protocol ($1.1152). Notice that STAR
remains cheaper than this benchmark even when aggregating
data from 1, 000, 000 clients, costing $0.4727 to run. Since the
monetary costs of running [10] are expected to scale simi-
larly linearly, we expect that STAR will remain significantly
cheaper beyond 1, 000, 000 clients as well.16

13Using F255, aggregations of data from 500, 000 and 1 million clients
take 18.9𝑠 and 72.1𝑠, respectively.
14February 2022
15In [10], computational is doubled due to the two-server setup.
16Dominant financial costs for STAR relate to bandwidth usage, which
scale linearly, rather than aggregation computation time.
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Cost Boneh et al. [10] STAR

Aggregation Aggregation VOPRF OHTTP proxy

Comms in $0.6193 $0.00389 $0.00027 $0.00435
Comms out $0.13 — $0.00017 $0.00086
Computation $0.3659 $0.0002 $0.03659 $0.00009
Total cost $1.1152 $0.00409 $0.03703 $0.0053

Figure 11: Monetary costs associated with running both STAR and [10], for aggregating 100, 000 client measurements. All costs
include communication from clients and, in the case of [10], communication between aggregation servers. Costs for STAR include
the additional costs associated with running the randomness server and OHTTP proxy resource. All costs are derived from
Amazon EC2 c4.8xlarge costs at time of writing (November 2021).

7 DISCUSSION

7.1 Candidate Input Distributions for STARLite
The STARLite protocol must only be used when client in-
puts that are not eventually revealed are sufficiently entropic;
client inputs that are revealed can be drawn from predictable
distributions (Appendix A.3). Large heavy-tailed distribu-
tions, with correspondingly small thresholds that ensures the
distribution tail has sufficient min-entropy, appear suitable
for ensuring enumeration attacks are difficult.

It was noted in [8] that full URLs form a large, unpre-
dictable search space. Other wide distributions include the
IPv6 address space, which is 64 bits long, and if clients are
submitting their own IP addresses these are likely to be un-
predictable and not shared by other clients. Finally, STAR
allows for multiple messages, sampled from independent dis-
tributions, to be concatenated together into a single message.
Concatenating enough independently distributed messages
can lead to a distribution that derives enough entropy from
each of the underlying distributions to construct a secure
client message. Finally, the ability of an aggregation server to
perform local attacks can be restricted by using deliberately
slower cryptographic algorithms, as discussed in Section 4.

We reemphasize that extreme care should be taken when
using STARLite, since making categorical arguments about
the entropy present in a real-world input distribution is very
difficult. In most cases, using STAR is the safest option and
comes with very small additional overheads.

7.2 Limitations

One limitation of STAR is that leakage can only be elimi-
nated using application-layer solutions that anonymize client
messages to the aggregation server (i.e. via an anonymizing
proxy). However, note that some applications (such as those
that involve checking for client-side fraud) may not want to
elide such leakage, and thus STAR maintains flexibility. A fur-
ther limitation is that STAR cannot provide security for small
message spaces, since this would allow a malicious aggrega-
tion server to enumerate all possible client inputs before it
has received them, via interaction with the randomness server.
This limitation is also possible to exploit in prior systems but
with attack complexity equal to 𝑛 · 𝜅, rather than 𝑛 in STAR.
Finally, as is the case for all threshold aggregation systems,
STAR remains vulnerable to Sybil attacks. Preventing such

attacks is out-of-scope for this work, beyond showing that
STAR is robust against adversarial clients to the extent that
their only power is in choosing arbitrary inputs (Theorem 5).

8 RELATED WORK

We summarize a number of prior approaches that aim to
preserve client privacy during threshold aggregation.

Data shuffling. Systems such as Prochlo [8] construct a data
pipeline for clients to provide measurements whilst maintain-
ing crowd-based privacy. Clients send their data to an initial
server that strips identifying information and collates mea-
surements into groupings.17 Once groupings are large enough,
the data is shuffled and sent to a processing server that
can perform general post-processing. Unfortunately, these
pipelines rely on honest execution of each of the pipeline
steps by non-colluding servers, or by trusted hardware and
software enclaves. Similar approaches using mix-nets [13]
and verifiable shuffling [31] provide better security guaran-
tees, but require increased interactivity to ensure privacy for
thresholds greater than one.

Generic multi-party computation. Generic multi-party com-
putation (MPC) protocols can be leveraged to compute
threshold aggregation functionality over data from multi-
ple clients [9, 27]. In this context, the server only learns those
values which are shared with it over 𝜅 times. Such proto-
cols can be computed directly between clients and servers
using generic two-party computation that ensures malicious
security. Some proposals focus on performing oblivious RAM
computations during client-server interactions [21, 22, 26, 30].
Unfortunately, such protocols remain impractically expensive
for real-world systems [17]. Moreover, such schemes require
heavily-involved implementations for instituting the online
(and multi-round) communication and computation patterns.

Outsourced computation. Private heavy-hitters protocols pro-
vide threshold aggregation functionality but with improved
privacy: client identity is inherently decoupled from input
submission.18 A promising, recent construction explored by
Boneh et al. [10] requires clients to secret-share or distribute
a point function (evaluating to 1 on their chosen value, and

17This process is compatible with adding differential privacy.
18Note that such leakage can be addressed in higher-level applications
by removing client identifying data from requests that contain input
data, see Section 4.5 for more details.
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0 elsewhere) between two aggregation servers. These servers
then combine shares of multiple point functions obliviously
and reveal the heavy-hitters among the client values. Overall,
for 400, 000 clients each holding a 256-bit string, it takes the
two servers 54 minutes to compute the 𝜅-heavy-hitters (where
𝜅 = 0.1% of all clients) in the dataset, requiring 70𝐾𝐵 total
communication per client. The [10] approach leaks all heavy-
hitting prefixes, and more generally all information leaked by
the multi-set of honest client inputs. This information can
be restricted by using local differential privacy.

Outsourcing of said computations had been explored previ-
ously in using > 2 servers, which then interact with each other
to compute the eventual output [9, 27]. Such constructions
lead to computation complexities that are quadratic in the
number of client inputs, and require usage of notably heavier
cryptographic primitives. While more efficient approaches
do exist, such as Prio [1, 14], they only allow numerical in-
puts, and still incur overheads that are infeasible for building
efficient threshold aggregation systems [10].

Single-server frameworks for private heavy-hitters. Random-
ized response based on local differential privacy (LDP) can
provide private heavy-hitter aggregation that is computed
only by a single server [4, 5, 12, 34, 40]. The major downside
of these approaches is that they do not provide satisfac-
tory correctness guarantees in all situations (a non-negligible
amount of errors may occur). In particular, when the number
of clients is anything but very large, then the amount of noise
introduced is likely to heavily skew the correctness of the
aggregation.19 Furthermore, since the utility of the system is
highly dependent on the privacy parameter and the number
of clients, a system built upon randomized response requires
each operator to make informed decisions about whether
the correctness signal is strong enough for their application.
In addition, solutions based on randomized response leak
a non-negligible amount of information about each client’s
private value, since they also include prefix-based leakage
similar to the heavy hitter protocol of [10]. We prefer to focus
on building a system that provides perfect correctness and
concrete security guarantees, without having to consider how
to make security parameterizations or the number of clients.

More generic approaches for achieving randomized re-
sponse, such as systems like RAPPOR [19], require clients
to send a number of bits that is similar in size to the entire
universe of possible input measurements. As a result, such
techniques are infeasible for situations where this universe is
very large.

Secret sharing of client data. The STAR construction has sim-
ilar properties to parts of the secret sharing approach used by
Apple, in their concurrent work to prevent the spread of Child
Sexual Abuse Material (CSAM) on Apple devices [7]. Similar-
ities appear in the manner that clients construct messages to
the aggregation server — using a secret sharing approach to
share media from each of their devices. However, the Apple
approach does not extend to a distributed setting, and only

19When the number of clients is very large, the noise that is introduced
will be relatively small in comparison to the signal.

operates across a single client’s shares. Our work tackles the
broader question of how clients can non-interactively agree
on compatible secret shares in a distributed system, allowing
recovery of messages that are shared by a threshold num-
ber of clients. The wider system and application are also
significantly different.

9 CONCLUSION

In this work we build STAR: a simple, practical mechanism
for threshold aggregation of client measurements. We intend
STAR to enable privacy-protecting, user-respecting data col-
lection practices that were not practical or affordable given
the existing state of the art. STAR is orders of magnitude
cheaper, easier to understand, and easier to implement (in
terms of code and trust requirements) than existing systems.
We provide a tested, open source implementation of STAR20

in rust that can be used in projects today. We hope that
STAR will result in analytics and usage data collection be-
ing more private, for more users, benefiting more analytics
frameworks.
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A CRYPTOGRAPHIC GUARANTEES

In the following section, we will assume the presence of each
of the cryptographic primitives specified in Section 4. The
description and security guarantees that we assume follow
from Section 3.

A.1 Correctness

We first state the correctness guarantee of the STAR protocol.
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Theorem 2. (Correctness) The protocol P (similarly P̃) is
correct with all but negligible probability.

Proof. The correctness of STAR follows from the fact
that S recovers a symmetric key 𝐾E𝜄 for every subset E𝜄 ∈ Y
of compatible client shares of size greater than 𝜅. In these
instances, the server uses the value 𝑡E𝜄 to check which shares
correspond to each other. It then uses the recover procedure
to reveal 𝑟E𝜄 ,1 and derive 𝐾E𝜄 . Once it knows 𝐾E𝜄 , S is able
to recover (𝑥 𝑗 , aux𝑗 ) by decrypting each client message corre-
sponding to E𝜄 .

As mentioned in Section 3, this requires that the underlying
field F𝑝 that secret shares are generated within is created
with prime order 𝑝 large enough. This ensures that randomly
sampling shares from this field is unlikely to lead to collisions.
If a collision occurs and the total number of different shares
is ≤ 𝜅, then the recovery operation will not succeed. □

A.2 Security

We prove the security of STAR against a malicious adversary,
that is allowed to operate in one of the following manners:
corrupting the aggregation server and a set of clients together;
corrupting the randomness server and a set of clients together;
and corrupting only a set of clients. We show that the STAR
protocol maintains client privacy (up to leakage specified by
L) in the case where either server is corrupted. Furthermore,
the computation is shown to be robust against an adversary
that controls only a set of clients, and attempts to alter
the protocol output. The security proofs for P are given in
Theorems 3, 4, and 5. Throughout, we will use FP to refer to
the ideal functionality for the STAR protocol, and we will use
FΓ to refer to the ideal functionality for the VOPRF protocol
that is used [2].

Random oracle model usage in VOPRF. While the P pro-
tocol itself does not include any explicit usage of random
oracles, we require that the internal VOPRF protocol uses a
random oracle RO in the final evaluation of the PRF value.
This allows the simulation to learn adversarial inputs from
queries during the protocol execution. Specifically, we re-
quire that the VOPRF scheme produces outputs of the form
RO(𝑥, 𝑓 (msk, 𝑥)). Many well-known OPRF primitives adhere
to this requirement [16, 24, 29, 39].

Security proofs. We now detail the various theorems that
prove the security of P.

Theorem 3. (Malicious aggregation server) The protocol P
is secure against any A that corrupts S and some subset
CA ⊂ C of all clients, assuming a secure VOPRF protocol Γ,
the IND-CPA security of Σ, and the privacy of Π𝜅,𝑛.

Proof. Let the current epoch be denoted by 𝜏 . We con-
struct our PPT simulator as follows.

• S runs pp ← Γ.setup(1𝜆) and (msk′𝜏 ,mpk′𝜏 ) ←
Γ.keygen(pp) and sends pp to A.
• S handles queries made by A to Γ by interacting with
the ideal functionality FΓ .

• When S receives queries (𝑥,𝑦) to the random oracle
Γ.RO, it first checks that 𝑦 = 𝑓 (msk′𝜏 , 𝑥). If this equality
holds, it either returns RO[𝑥], or samples 𝑧←$ {0, 1}ℓ ,
sets RO[𝑥] = 𝑧𝑥 , and then returns 𝑧𝑥 . If the inequality
does not hold, it returns a randomly sampled value.
• When S receives (𝜅, (𝑐𝑖 , 𝑠𝑖 , 𝑡𝑖 )𝑖∈CA ) from the adversary,
it sends all inputs XA that it received RO queries for,
with the set auxA = {⊥}𝑙 ∈ |XA | and 𝜅, to FP . It receives
Y as output from FP , and L(X).
• Let N be the collection of subsets of all indices returned
by L(X), let NA ⊂ N denote all subsets that contain
inputs taken from XA , and let Z = ∅.
• For each (𝑥 𝑗 , aux𝑗 ) ∈ Y:
– If 𝑧𝑥 = RO[𝑥] is not empty, then let:

𝐾𝑥 ← derive(𝑧𝑥 [1]);
𝑐𝑥,𝑗 ← Σ.Enc(𝐾𝑥 , 𝑥 ∥aux𝑗 );
𝑟 𝑗 ←$F𝑝 ;
𝑠𝑥,𝑗 ← Π𝜅,𝑛 .share(𝑧𝑥 [1], 𝑟 𝑗 ; 𝑧𝑥 [2]);
𝑡𝑥,𝑗 ← 𝑧𝑥 [3] .

(2)

Else, sample 𝑧𝑥 ←$ {0, 1}ℓ and construct (𝑐𝑥,𝑗 , 𝑠𝑥,𝑗 , 𝑡𝑥,𝑗 )
as in Equation (3).

– Let Z[ 𝑗] = (𝑐𝑥,𝑗 , 𝑠𝑥,𝑗 , 𝑡𝑥,𝑗 ).
• For each 𝑗 where aux𝑗 =⊥, delete Z[ 𝑗].
• For each subset N ∈ L(X) where |N | ≤ 𝜅:
– If N ∈ NA : for each 𝜄 ∈ N : let 𝑧𝜄 = RO[𝑥𝜄 ], and
construct (𝑐𝜄 , 𝑠𝜄 , 𝑡𝜄 ) as in Equation (3).

– Else, sample 𝐾N ←$ {0, 1}𝜆, and then for each 𝜄 ∈ N
compute:

𝑐𝜄 ← Σ.Enc(𝐾𝜄 , 0);
𝑠𝜄 ←$F𝑝 ;

𝑡𝜄 ←$ {0, 1}ℓ/3 .
(3)

In the following claims, we prove that the simulation is
indistinguishable to the adversary from the real protocol via
a series of game-hops. For a broad overview of the security
proof, see Figure 12.

Claim A.1. G0
s≃ G1 due to the random oracle properties of

Γ.RO.

Proof. In G0, the execution is as in protocol P. In G1, all
queries (𝑥,𝑤) for the Γ.RO are handled by first checking that
𝑤 = 𝑓 (msk𝜏 , 𝑥), which can be done using the master secret key
sampled by the simulator. If the check passes, then the query
is answered by either returning Γ.RO[𝑥] (if non-empty), or
sampling a new value and assigning that to Γ.RO[𝑥], before
returning it. If the check does not pass, then the query is
answered by simply returning a random value. Note that the
pseudorandomness property of Γ ensures that the two games
are indistinguishable. □

Claim A.2. G1
c≃ G2 by the security of Γ.

Proof. In G2 the simulator no longer has access to msk𝜏 ,
and only has access to the ideal functionality FΓ . Any blind
evaluation query for 𝑥 ′ is answered by sending the query to
the corresponding interface of FΓ , and returning the response
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Step Γ.RO queries 𝑖 ∈ ĈA ( 𝑗 ∉ ĈA) ∧ (𝑥 𝑗 ∈ Y) (𝑙 ∉ ĈA) ∧ (𝑥𝑙 ∉ Y) Hop

G0 (𝑥 𝑗 , 𝑓 (msk𝜏 , 𝑥)) (𝑐𝑖 , 𝑠𝑖 , 𝑡𝑖 ) (Σ.Enc(𝐾 𝑗 , 𝑥 𝑗 ∥aux𝑗 ),Π𝜅,𝑛 .share(𝑟 𝑗,1; 𝑟 𝑗,2), 𝑟 𝑗,3) (Σ.Enc(𝐾𝑙 , 𝑥𝑙 ∥aux𝑙 ),Π𝜅,𝑛 .share(𝑟𝑙,1; 𝑟𝑙,2), 𝑟𝑙,3) —

G1 (𝑥 𝑗 , 𝑤
?
= 𝑓 (msk𝜏 , 𝑥) ) (𝑐𝑖 , 𝑠𝑖 , 𝑡𝑖 ) (Σ.Enc(𝐾 𝑗 , 𝑥 𝑗 ∥aux𝑗 ),Π𝜅,𝑛 .share(𝑟 𝑗,1; 𝑟 𝑗,2), 𝑟 𝑗,3) (Σ.Enc(𝐾𝑙 , 𝑥𝑙 ∥aux𝑙 ),Π𝜅,𝑛 .share(𝑟𝑙,1; 𝑟𝑙,2), 𝑟𝑙,3) ROM

G2 (𝑥 𝑗 , 𝑤
?
= FΓ (𝑥 𝑗 ) ) (𝑐𝑖 , 𝑠𝑖 , 𝑡𝑖 ) (Σ.Enc(𝐾 𝑗 , 𝑥 𝑗 ∥aux𝑗 ),Π𝜅,𝑛 .share(𝑟 𝑗,1; 𝑟 𝑗,2), 𝑟 𝑗,3) (Σ.Enc(𝐾𝑙 , 𝑥𝑙 ∥aux𝑙 ),Π𝜅,𝑛 .share(𝑟𝑙,1; 𝑟𝑙,2), 𝑟𝑙,3) VOPRF

G3 (𝑥 𝑗 , FΓ (𝑥 𝑗 )) (𝑐𝑖 , 𝑠𝑖 , 𝑡𝑖 ) (Σ.Enc(𝐾 𝑗 , 𝑥 𝑗 ∥aux𝑗 ),Π𝜅,𝑛 .share(𝑟 𝑗,1; 𝑟 𝑗,2), 𝑟 𝑗,3) (Σ.Enc(𝐾𝑙 , 𝑥𝑙 ∥aux𝑙 ), 𝑠𝑙 ←$F𝑝 , 𝑟𝑙,3) (𝜅, 𝑛)-secret-sharing
G4 (𝑥 𝑗 , FΓ (𝑥 𝑗 )) (𝑐𝑖 , 𝑠𝑖 , 𝑡𝑖 ) (Σ.Enc(𝐾 𝑗 , 𝑥 𝑗 ∥aux𝑗 ),Π𝜅,𝑛 .share(𝑟 𝑗,1; 𝑟 𝑗,2), 𝑟 𝑗,3) ( Σ.Enc(𝐾𝑙 , 0 . . . 0) , 𝑠𝑙 ←$F𝑝 , 𝑟𝑙,3) IND-CPA

Figure 12: Game hops required to prove security of Theorem 3. G0 corresponds to the real world execution of P, and G4
corresponds to the PPT simulator that we use in the ideal world formulation. The third, fourth, and fifth columns correspond to
the way that the triples, that are sent to S by the clients, are constructed in each game hop. The differences between each game
are highlighted in blue.

to A. When A makes a query (𝑥,𝑤) to RO, S sends (𝑥) to
the evaluation interface for FΓ to check if the queries are
admissible in the same way as G1. Note that the difference
between G1 and G2 can be simulated by an adversary B
against Γ. □

Claim A.3. G2
c≃ G3 by the share privacy of Π𝜅,𝑛.

Proof. In G3, the simulator replaces all values (𝑠𝑙 , 𝑡𝑙 ) sent
by honest clients C𝑙 where 𝑥𝑙 ∉ Y and they belong to some

N ∈ N̂ \ NA (i.e., never queried to RO by the adversary),
with random values. The distinguishing advantage of the two
games can be bounded by an adversary trying to break the
privacy requirements of Π𝜅,𝑛 , since there are less than 𝜅 such
shares. Moreover, the distribution of 𝑡𝑙 is already random due
to never having learnt the value from the output of Γ. □

Claim A.4. G3
c≃ G4 by the IND-CPA security of Σ.

Proof. In G4, the only difference is that any message from
an honest client C𝑙 to the server S that includes ciphertexts
that encode messages 𝑥𝑙 that have not previously been queried
to Γ.RO are modified. In particular, these messages replace
the encrypted ciphertext of the encoded message (𝑥𝑙 ∥aux𝑙 )
with an encryption of all zeros (matching the length). The
difference between these two games can be simulated by an
adversary B attempting to break the IND-CPA security of Σ,
since the encryption key is derived from randomness that A
never witnessed. Note that the clients C𝑙 that belong to this
set can be learned from the output Y and the output of the
leakage function L(X). □

Note that the execution in G4 is identical to the view de-
scribed by the simulator above. Therefore, putting Claim A.1,
Claim A.2, Claim A.3, and Claim A.4 together, we have that
the distinguishing advantage of the real-world execution and
the ideal world simulation is negligible and the proof of The-
orem 3 is complete. □

Theorem 4. (Malicious randomness server) The protocol P
is secure against any A that corrupts O and some subset
CA ⊂ C of all clients, assuming the security of Γ, and the
IND-CPA security of Σ.

Proof. By the security of Γ, the simulator can simulate
the view of O during the randomness phase of the protocol.
During the aggregation phase, the server O also witnesses

encrypted client messages that are destined for the aggre-
gation server. Such encrypted messages can be simulated
as encryptions of all zeroes in every case by the IND-CPA
security of Σ. This simulates the entire view of O.

Note that interactions with the ideal functionality can be
made without submitting any adversarial client inputs, since
these may be arbitrarily corrupted. Note that the simulator
can thus only maintain correctness for S up to the output
learnt purely from honest clients. □

Theorem 5. (Malicious clients) The protocol P is secure
against any adversary A corrupting some subset CA ⊂ C
of all clients, assuming the security of Γ, the IND-CPA secu-
rity of Σ, and the privacy of Π𝜅,𝑛).

Proof. This proof follows an almost identical set of tran-
sitions to the proof of Theorem 3. Note that the simulator
can simulate all messages in the same way, except that it only
sends adversarial client messages to the ideal functionality
that are well-constructed. It can check whether messages are
well-constructed by checking that the ciphertext 𝑐𝑖 encrypts
a value 𝑥𝑖 that was received in the queries to Γ.RO, and using
a correctly derived key. Note that this can be checked using
the combination of inputs and outputs derived from Γ.RO.
Similarly, the simulator can check whether 𝑠𝑖 and 𝑡𝑖 are con-
sistent with the value of 𝑥𝑖 that is encrypted. The simulator
is then able to construct a set of messages using the output
of FP that provides the same correctness guarantees as in
the real-world execution. The simulation for these messages
is identical to the simulation in the proof of Theorem 3. □

A.3 Security for STARLite
The security of the STARLite protocol only holds when the
client input distribution has sufficient min-entropy. Simulat-
ing security of unrevealed measurements against a malicious
aggregation server is fairly trivial since the simulator can sim-
ply construct dummy-encodings, and rely upon the fact that
the aggregation server is unable to guess which measurement
is encoded with anything other than negligible probability.
Otherwise, the simulation follows a similar model as the proof
of Theorem 3. In the case of malicious clients, the security
of the system can be ensured by modelling the randomness
derivation process as interacting with a random oracle model.
This allows constructing a proof with identical dynamics to
Theorem 5.
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In both cases, it should be reacknowledged that finding
practical input distributions that demonstrate such behavior

is difficult. We provide further discussion on this problem in
Section 7.1.
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