
STAR: SECRET SHARING FOR
THRESHOLD AGGREGATION REPORTING

Alex Davidson1 Peter Snyder1 Joseph Genereux1

E. B. Quirk1 Benjamin Livshits2 Hamed Haddadi1,2

1Brave Software

2Imperial College London

ACM CCS 2022 ::: Los Angeles, USA

pes@brave.com ::: alxdavids@brave.com



THE PROBLEM CONSTRUCTION ANALYSIS CONCLUSION

k = 2

x z y x z x

server

x z

Sometimes known as k-heavy-hitters

THRESHOLD AGGREGATION 2



THE PROBLEM CONSTRUCTION ANALYSIS CONCLUSION

Ideal case: No efficient
solutions

?

Approximate: DP, randomised
resp.

N-server aggregation: DPFs,
Prio, SMPC

shuffler

Trusted shuffling: e.g.
Prochlo

PREVIOUS WORK 3



THE PROBLEM CONSTRUCTION ANALYSIS CONCLUSION

randomness server

aggregation server

1. Randomness phase

2. Aggregation phase

⋄ Emphasis on simplicity
and performance

⋄ Well-known cryptography
(secret sharing, OPRFs)

⋄ Orders of magnitude
cheaper than
state-of-the-art

⋄ Malicious security

⋄ Auxiliary data support

⋄ Open-source rust code:
github.com∕brave∕sta-rs

OVERVIEW OF STAR 4

https://github.com/brave/sta-rs


THE PROBLEM CONSTRUCTION ANALYSIS CONCLUSION

Shamir secret sharing

[x]

[PRF(sk,x)]

Oblivious PRF

Anonymizing proxy

x aggregation
server

msg

client_id

msg

Anonymizing proxy (such as Tor, or
Oblivious HTTP)

c = Enc(ek,m)

Symmetric encryption

CRYPTOGRAPHIC TOOLS 5



THE PROBLEM CONSTRUCTION ANALYSIS CONCLUSION

Client(x,aux) Randomness Server Aggregation Server

Generate
message

Key rotation

Reveal (x,aux)
if x sent by
k clients.

request(x)

response(rand)

message

Randomness phase

Message phase

Aggregation phase

THE STAR PROTOCOL 6



THE PROBLEM CONSTRUCTION ANALYSIS CONCLUSION

Randomness phase

x randomness
server

[x]

[PRF(sk,x)]

Message phase

⋄ (r1,r2,r3) = H(PRF(sk,x))

⋄ s = Share(secret=r1;randomness=r2), t = r3

⋄ ek = Derive(r1)

⋄ c = Enc(ek,m=(x,aux))

RANDOMNESS & MESSAGE PHASES 7



THE PROBLEM CONSTRUCTION ANALYSIS CONCLUSION

Aggregation phase

x aggregation
server x or ⊥

[c,s,t]

Steps

⋄ Group messages based on deterministic tag t

⋄ If ≥ k messages in the group, run share
recovery on s and retrieve r1

⋄ Derive ek from r1

⋄ Decrypt each c to learn (x,aux)

AGGREGATION PHASE 8



THE PROBLEM CONSTRUCTION ANALYSIS CONCLUSION

Malicious security in random oracle model

x aggregation
server

[c,s,t]

Problem: Deterministic tags
Solution: Randomness server
key rotations

x aggregation
server

[c,s,t]

Problem: Sybil attacks
Solution: All threshold
aggregation schemes
vulnerable

x randomness
server

[x]

[garbage]

Problem: Randomness DoS
Solution: Clients can verify
randomness (VOPRF)

x aggregation
server

proxy

Problem: Client identity
Solution: Proxy messages,
e.g. via Tor, or via
randomness server using
Oblivious HTTP

SECURITY & LEAKAGE 9



THE PROBLEM CONSTRUCTION ANALYSIS CONCLUSION

Aggregation runtimes (k ∈ {0.01%, 0.1%, 1%})

Other costs (per-client)
⋄ Communication:

▶ Aggregation: 233 bytes (+ auxiliary data)
▶ Randomness server: 165 bytes

⋄ VOPRF: < 2ms
⋄ OHTTP: < 1ms, and approx. 4x communication

PERFORMANCE (256-BIT MEASUREMENTS) 10



THE PROBLEM CONSTRUCTION ANALYSIS CONCLUSION

Features
Feature STAR Poplar (S&P’21)

Aggregation servers (#) 1 2
Auxiliary data 3 7

Leakage Tag-based Prefix-based
Identity-hiding 3 (OHTTP) 3

Cryptography Secret-sharing,
VOPRFs

Distributed point
functions

Headlines (including OHTTP)
⋄ Computation: 1773x faster
⋄ Bandwidth: 62.4x smaller
⋄ Financial: 24x cheaper1

1AWS c4.8xlarge, Feb 2022 prices

COMPARISON (STAR & POPLAR) 11



THE PROBLEM CONSTRUCTION ANALYSIS CONCLUSION

⋄ Simple, Cheap Privacy-Preserving Threshold
Aggregation with k-anonymity

⋄ Implementations:
▶ github.com∕brave∕sta-rs (Rust)
▶ github.com∕chris-wood∕star-go (Go)

⋄ IETF standardization: draft-dss-star-02

⋄ Used at Brave for Web Discovery Project

CONCLUSIONS & ONGOING WORK 12

https://github.com/brave/sta-rs
https://github.com/chris-wood/star-go
https://datatracker.ietf.org/doc/draft-dss-star
https://brave.com/privacy-updates/19-star/

	The Problem
	Construction
	Analysis
	Conclusion

