## STAR: SECRET SHARING FOR THRESHOLD AGGREGATION REPORTING

Alex Davidson<sup>1</sup> <u>Peter Snyder</u><sup>1</sup> Joseph Genereux<sup>1</sup> E. B. Quirk<sup>1</sup> Benjamin Livshits<sup>2</sup> Hamed Haddadi<sup>1,2</sup>

<sup>1</sup>Brave Software

<sup>2</sup>Imperial College London

ACM CCS 2022 ::: Los Angeles, USA

pes@brave.com ::: alxdavids@brave.com

k = 2



Sometimes known as k-heavy-hitters

### THRESHOLD AGGREGATION



Ideal case: No efficient
solutions



**N-server aggregation**: DPFs, Prio, SMPC



**Trusted shuffling**: e.g. Prochlo



**Approximate**: DP, randomised resp.

### **PREVIOUS WORK**



- Emphasis on simplicity and performance
- Well-known cryptography (secret sharing, OPRFs)
- ◇ Orders of magnitude cheaper than state-of-the-art
- ◊ Malicious security
- ◊ Auxiliary data support
- ◇ Open-source rust code: github.com/brave/sta-rs

#### OVERVIEW OF STAR





Anonymizing proxy (such as Tor, or Oblivious HTTP)

Shamir secret sharing





Symmetric encryption

**Oblivious PRF** 

#### **CRYPTOGRAPHIC TOOLS**



#### THE STAR PROTOCOL

| THE PROBLEM | CONSTRUCTION | ANALYSIS   | CONCLUSION |
|-------------|--------------|------------|------------|
| Randomn     | ess phase    |            |            |
|             | [x]          | randomness |            |
|             | [PRF(sk.x)]  | server     |            |

Message phase

$$\diamond (r_1, r_2, r_3) = H(PRF(sk, x))$$

 $\diamond$  **s** = Share(secret=r<sub>1</sub>;randomness=r<sub>2</sub>), **t** = r<sub>3</sub>

$$\diamond$$
 ek = Derive(r<sub>1</sub>)

## **RANDOMNESS & MESSAGE PHASES**

| THE PROBLEM CONSTRUCTIO | N ANA       | LYSIS | CONCLUSIO |
|-------------------------|-------------|-------|-----------|
| Aggregation phase       |             |       |           |
| [c.s.t]                 |             | _     |           |
|                         | aggregation |       |           |
| ~                       | server      |       |           |

#### Steps

- $\diamond$  Group messages based on deterministic tag t
- $\diamond$  If  $\geq$  k messages in the group, run share recovery on s and retrieve  $r_1$
- $\diamond$  Derive **ek** from **r**<sub>1</sub>
- Output each c to learn (x,aux)

#### AGGREGATION PHASE

| THE | PROBLEM                | CONSTRUCTION | ANALYSIS      | CONCLUSION |
|-----|------------------------|--------------|---------------|------------|
|     | Malicious              | security in  | random oracle | model      |
|     | [c,s, <mark>t</mark> ] |              | [x]           | randomness |

**Problem:** Deterministic tags **Solution:** Randomness server key rotations

aggregation

server



Problem: Randomness DoS
Solution: Clients can verify
randomness (VOPRF)



**Problem:** Sybil attacks **Solution:** All threshold aggregation schemes vulnerable



**Problem:** Client identity **Solution:** Proxy messages, e.g. via Tor, or via randomness server using Oblivious HTTP

## SECURITY & LEAKAGE

Aggregation runtimes (k  $\in$  {0.01%, 0.1%, 1%})



### Other costs (per-client)

- Ocmmunication:
  - Aggregation: 233 bytes (+ auxiliary data)
  - Randomness server: 165 bytes
- ◊ VOPRF: < 2ms</p>
- ◊ OHTTP: < 1ms, and approx. 4x communication</p>

# **PERFORMANCE** (256-BIT MEASUREMENTS)

#### Features

| Feature                 | STAR                      | Poplar (S&P'21)                |
|-------------------------|---------------------------|--------------------------------|
| Aggregation servers (#) | 1                         | 2                              |
| Auxiliary data          | 1                         | ×                              |
| Leakage                 | Tag-based                 | Prefix-based                   |
| Identity-hiding         | ✓ (OHTTP)                 | 1                              |
| Cryptography            | Secret-sharing,<br>VOPRFs | Distributed point<br>functions |

#### Headlines (including OHTTP)

- ◊ Computation: 1773x faster
- ◊ Bandwidth: 62.4x smaller
- ◊ Financial: 24x cheaper<sup>1</sup>

<sup>1</sup>AWS c4.8xlarge, Feb 2022 prices

## COMPARISON (STAR & POPLAR)

 Simple, Cheap Privacy-Preserving Threshold Aggregation with k-anonymity

- ◊ Implementations:
  - github.com/brave/sta-rs (Rust)
  - github.com/chris-wood/star-go (Go)
- ◊ IETF standardization: draft-dss-star-02
- ◊ Used at Brave for Web Discovery Project

## CONCLUSIONS & ONGOING WORK